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VARIATIONAL FORMULATION FOR MAXWELL’S EQUATIONS

WITH LORENZ GAUGE: EXISTENCE AND UNIQUENESS OF

SOLUTION

MICHAL KORDY, ELENA CHERKAEV, AND PHIL WANNAMAKER

Abstract. The existence and uniqueness of a vector scalar potential representation with the
Lorenz gauge (Schelkunoff potential) is proven for any vector field from H(curl). This repre-
sentation holds for electric and magnetic fields in the case of a piecewise smooth conductivity,
permittivity and permeability, for any frequency. A regularized formulation for the magnetic field
is obtained for the case when the magnetic permeability µ is constant and thus the magnetic field
is divergence free. In the case of a non divergence free electric field, an equation involving scalar
and vector potentials is proposed. The solution to both electric and magnetic formulations may
be approximated by the nodal shape functions in the finite element method with system matrices
that remain well-conditioned for low frequencies. A numerical study of a forward problem of a
computation of electromagnetic fields in the diffusive electromagnetic regime shows the efficiency
of the proposed method.
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1. Introduction

Fast and stable methods are needed for calculating electromagnetic (EM) fields
in and over the Earth. Such a simulation has applications in imaging of subsurface
electrical conductivity structures related to exploration for geothermal, mining,
and hydrocarbon resources. Over commonly used frequencies, EM propagation
in the Earth is diffusive since the conduction dominates over the dielectric dis-
placement. The finite element method (FEM) is attractive for this simulation in
comparison with other techniques in that it may be easily adapted to complex
boundaries between regions of constant EM properties, including the topography
or the bathymetry. The 3D interpretation of geophysical data is numerically ex-
pensive, as the forward problem needs to be computed many times [26, 3, 14].

For large scale simulation problems, iterative methods have been the ones of
choice to solve linear systems resulting from FEM formulations [7, 16, 11, 34, 29].
The speed of iterative methods is strongly related to the properties of the varia-
tional problem used. Difficulties arise when the computational domain includes a
high contrast, both the non-conducting air and a conducting medium in the Earth’s
subsurface, especially for low frequencies. Furthermore, the Earth’s subsurface in
general is characterized by the spatially changing conductivity, dielectric permit-
tivity and magnetic permeability. This can slow or prevent iteration convergence
[23, 31].

There have been multiple approaches to addressing the difficulties encountered
with high physical property contrasts and potentially discontinuous EM field vari-
ables. One is to apply special finite elements, so-called edge elements, that have a
discontinuous normal component of the vector field across elements, while keeping
the tangential field component continuous [24, 18, 4]. The edge elements are also
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compatible with the curl operator and are a part of the de Rham diagram [6]. How-
ever, if the curl-curl equation for the electric field E is used, and if the conductivity
is very small in a part of the domain (e.g., in the air) or if the frequency is very
low, the problem becomes ill-posed and the system matrix has a very large near
null space. This requires use of sophisticated preconditioners that handle the null
space of the curl properly in order to use iterative solvers. Such preconditioners
have been developed (see [38, 17, 19, 21, 2, 39]).

An alternative is to not solve directly for the EM fields themselves, but instead to
initially solve a well conditioned equation for a quantity which is continuous across
interfaces. Subsequently, the EM fields are obtained through a spatial differentia-
tion with the field discontinuities defined by the property jumps. One such quantity
is a vector potential with the Lorenz gauge, also called the Schelkunoff potential
[37, 8, 33, 9], which we examine in this paper. In general, this potential has both
scalar and vector components, and there are both electric and magnetic versions.
Using the Lorenz gauge, the scalar potential can be expressed as a function of the
vector potential, and as a result only the vector potential is needed to represent the
EM field.

In this paper, we show that the Lorenz gauged vector potential representation
exists for any member of H(∇×). Thus one can use it to represent the electric field
E as well as the magnetic field H . We prove that this representation exists for any
frequency ω > 0, if the permittivity ǫ is bounded and the magnetic permeability
µ and the conductivity σ are bounded away from 0 and ∞. The electromagnetic
properties ǫ, µ, σ are allowed to be discontinuous. We discuss an application of
this potential for FEM approximation of the EM field. In principle, it is enough to
use only the vector Lorenz gauged potential to represent the EM field. However,
when the conductivity σ is not constant and the electric field is not divergence-
free, it is difficult to find a weak equation involving only the vector potential. In
particular, we show that the vector potential does not satisfy the weak form of
the Helmholtz equation, sometimes erroneously used as a basis for FEM simulation
[33]. For the general case of non divergence-free EM fields, we propose a mixed
formulation involving the scalar and vector potentials.

We consider also the case of representing the magnetic field using a vector poten-
tial with the Lorenz gauge. If the magnetic permeability µ is constant, the magnetic
field is divergence-free and the vector potential coincides with the magnetic field.
We show that the Lorenz gauge approach leads to a regularized weak equation for
the magnetic field involving a divergence term, and as a result the equation does
not suffer from the large near null space.

We show that sesquilinear forms of the equations for both magnetic vector po-
tential and electric scalar-vector formulations remain coercive at low frequencies.
It makes iterative solvers fast even if only standard vector multigrid precondition-
ers [35] are used. Another advantage is that the considered vector potential is a
member of H(∇×) ∩ H(∇·). This allows to use nodal elements, which have more
widely available implementations than edge elements. The edge elements, due to a
discontinuity of the shape functions across elements boundaries, require post pro-
cessing to get a value of a field at a specific point within an element. In geophysical
applications, the domain is a convex polygon, so nodal discretization is dense in
H0(∇×) ∩H(∇·) or in H(∇×) ∩H0(∇·) [13, 6].

Regularization of the curl-curl equation using a divergence term has been also
suggested in [1, 13]. The current paper extends these ideas to the case of non-
constant, complex valued electromagnetic properties and non divergence-free fields.


