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NUMERICAL SHOOTING METHODS FOR OPTIMAL

BOUNDARY CONTROL AND EXACT BOUNDARY CONTROL

OF 1-D WAVE EQUATIONS
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(Communicated by Max Gunzburger)

Abstract. Numerical solutions of optimal Dirichlet boundary control problems for linear and
semilinear wave equations are studied. The optimal control problem is reformulated as a system

of equations (an optimality system) that consists of an initial value problem for the underlying
(linear or semilinear) wave equation and a terminal value problem for the adjoint wave equation.
The discretized optimality system is solved by a shooting method. The convergence properties
of the numerical shooting method in the context of exact controllability are illustrated through

computational experiments. In particular, in the case of the linear wave equation, convergent
approximations are obtained for both smooth minimum L2-norm Dirichlet control and generic,
non-smooth minimum L2-norm Dirichlet controls.
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1. Introduction

In this chapter we consider an optimal boundary control approach for solving
the exact boundary control problem for one-dimensional linear or semilinear wave
equations defined on a time interval (0, T ) and spatial interval (0, X). The exact
boundary control problem we consider is to seek a boundary control g = (gL, gR) ∈
L2(0,T) ⊂ [L2(0, T )]2 and a corresponding state u such that the following system
of equations hold:

(1)


utt − uxx + f(u) = V in Q ≡ (0, T )× (0, X) ,

u|t=0 = u0 and ut|t=0 = u1 in (0, X) ,

u|t=T =W and ut|t=T = Z in (0, X) ,

u|x=0 = gL and u|x=1 = gR in (0, T ) ,

where u0 and u1 are given initial conditions defined on (0, X), W ∈ L2(0, X) and
Z ∈ H−1(0, X) are prescribed terminal conditions, V is a given function defined on
(0, T ) × (0, X), f is a given function defined on R, and g = (gL, gR) ∈ [L2(0, T )]2

is the boundary control.
It is well known (see, e.g., [15, 16, 18, 19]) that when f = 0 (i.e., the equation

is linear) and T is sufficiently large, the exact controllability problem (1) admits
at least one state-control solution pair (u,g); furthermore, the exact controller g
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having minimum boundary L2 norm is unique. Exact boundary controllability for
semilinear wave equations have also been established for certain asymptotically
linear or superlinear f ; see, e.g., [4, 23, 24].

For the exact boundary controllability problem associated with the linear wave
equation there are basically two classes of computational methods in the literature.
The first class is HUM-based methods; see, e.g., [6, 9, 15, 17, 22]. The approximate
solutions obtained by the HUM-based methods in general do not seem to converge
(even in a weak sense) to the exact solutions as the temporal and spatial grid sizes
tend to zero. Methods of regularization including Tychonoff regularization and fil-
tering that result in convergent approximations were introduced in those papers on
HUM-based methods. The second class of computational methods for boundary
controllability of the linear wave equation was those based on the method proposed
in [8]. One solves a discrete optimization problem that involves the minimization of
the discrete boundary L2 norm subject to the undetermined linear system of equa-
tions formed by the discretization of the wave equation and the initial and terminal
conditions. This approach was implemented in [12]. The computational results
demonstrated the convergence of the discrete solutions when the exact minimum
boundary L2 norm solution is smooth. In the generic case of a non-smooth exact
minimum boundary L2 norm solution the computational results of [12] exhibited
at least a weak L2 convergence of the discrete solutions.

Although there are well-known theoretical results concerning boundary control-
lability of semilinear wave equations (see, e.g., [4, 23, 24]), little seems to exist in
the literature about computational methods for such problems.

In this chapter we attempt to solve the exact controllability problems by an
optimal control approach. Precisely, we consider the following optimal control
problem: minimize the cost functional

J0(u,g) =
σ

2

∫ 1

0

|u(T, x)−W (x)|2 dx+
τ

2

∫ 1

0

|ut(T, x)− Z(x)|2 dx

+
1

2

∫ 1

0

(|gL|2 + |gR|2) dt
(2)

subject to

(3)


utt − uxx + f(u) = V in Q ≡ (0, T )× (0, 1)

u|t=0 = u0 and ut|t=0 = u1 in (0, 1)

u|x=0 = gL and u|x=1 = gR in (0, T ) .

The optimal control problem is converted into an optimality system of equations
and this optimality system of equations will be solved by a shooting method.

The optimal control approach of this chapter provides an alternative method to
the two classes of methods mentioned in the foregoing for solving the exact control-
lability problem for the linear wave equations; it also offers a systematic procedure
for solving exact controllability problems for the semilinear wave equations. The
computational solutions of this chapter obtained by an optimal control approach
exhibit behaviors similar to those of the solutions obtained in [12]. Note that an
optimal solution exists even when the equation is not exactly controllable. Note
also that the solution methods in the literature for optimal control of PDEs can be
utilized. and that there are certain intrinsic parallelisms to the algorithms studied
in this chapter.


