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AN IMMERSED BOUNDARY METHOD FOR DIATOM

SEDIMENTATION

YU-HAU TSENG, PING HUANG, AND HUAXIONG HUANG

Abstract. We propose a mathematical model and immersed boundary method for the growth
and breakup of diatom chains. Diatom chains are treated as zero thickness open curves thanks to
their small aspect ratio. The growth of the chain is modelled by adding small pieces of diatoms
at the two end points while the breakup is done by removing a small piece in the middle of the
chain. Numerical experiments are carried out to investigate the effects of growth and breakup
on the sedimentation rate of diatom chains. Simulations of multiple diatom chains show that
sedimentation rate is highly dependent on diatoms’ spatial distribution. The results can be used
to explain the observations that diatoms often form chain-like structures in natural habitats.
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1. Introduction

In many taxonomic groups, colony formation among planktonic organisms sus-
pended in water is very common. The colonial structures are formed in many ways
and many colonies take the form of chains [14]. Diatom is one of the most important
species among those phytoplankton [1]-[3]. It is found that diatoms are capable of
existing as independent units and also join together to form long chains as well [3].
Since diatoms are denser than water and they normally sink under gravity, any
strategy that helps to create a condition to reduce the sedimentation speed will be
evolutionary advantageous.

In [9], diatom chains are modelled as nearly inextensible two-dimensional fibres
with large bending resistance. Sedimentation of diatoms are studied using the im-
mersed boundary method. It was found that the speed of sedimentation is affected
by the length as well as the orientation [8] for an isolated fibre or a group of fibres
with relative large separation distance. On the other hand, when the separation
distance is small, sedimentation speed is greatly enhanced, due to hydrodynamic
interaction. It was also found that orientation of these fibres becomes less a factor
under a shear flow. While these findings are informative, it is not clear what deter-
mines the separation distance among diatoms in an environment where planktons
could grow. In this paper, we develop an immersed boundary method to investigate
the dynamical process of diatom growth and sedimentation, where the separation
distance among diatoms is a not a pre-determined parameter.

The main feature of our immersed boundary method is that the length of the
immersed structure is under active control. First of all, the diatom chain element
is nearly inextensible without growth, which is approximated by a nonlinear strain-
hardening spring. Secondly, the growth of diatoms is modelled by adding extra
element to the diatom chain. Finally, when the chain breaks, a repulsive force
among diatom chains is imposed to modelled the thick setae structures found in
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some diatom species [13]. Otherwise, diatoms are allowed to move freely under
gravity and the surrounding flow fields.

In Section 2, an immersed boundary formulation of Navier-Stokes equations and
interfacial forces are described. A model for diatom growth and breakup is proposed
in Section 3. In Section 4, we present simulations to demonstrate the effectiveness
of our method. We finish our paper by a short conclusion in Section 5.

2. Mathematical model

A simple mathematical model of diatom sedimentation consists of dynamics of
fluid, gravitational force, and deformation of diatoms. The corresponding immersed
boundary formulation [10, 12, 16] is shown as follows.
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where Reynolds number Re represents the ratio of fluid inertia to viscous stress,
capillary number Ca and Bn respectively describe the strength of interfacial ten-
sion and bending stiffness. The bending stiffness is simply a constant during di-
atoms sedimentation, while the interfacial tension is described as a nonlinear strain-
hardening spring of the form σ =

(

σl + σn∆Sα
2
)

∆Sα, where σl and σn are respec-
tively linear and nonlinear constants controlling inextensible strength, and ∆Sα

is the difference of stretching factor. The Froude number Fr is the ratio of fluid
inertia to gravitational force, and dimensionless number β = ∆ρD is the relative
density difference scaled by the diatom diameter (relative to its length). The di-
atom chain is parameterized as a function X(t, α). Equations (3)-(5) distribute
interfacial forces (on Σ) to body forces (on Ω) through Dirac delta function, while
Equation (6) shows that the interfaces are carried by the fluid flow with interfacial
velocity U which is interpolated using bulk fluid velocity u.

3. Growth and breakup

Growth and breakup mechanisms play essential roles in life cycle of diatoms [5, 7].
Both affect the sedimentation speed such that diatoms can adapt the change of en-
vironments [2, 4]. Physically, growth mainly involves in the distribution of nutrition
in sea water [2, 6, 15], which can be represented by the concept of concentration
(weight per volume). Mathematically, the nutrition concentration can be simplified
as c(t,x), a function of time and space. The corresponding numerical methods to
handle concentration issues can be found in [10, 11].

With the definition of concentration, the growth rate is intuitively a concen-
tration dependent function, vg(c(t,X)). Here, an interpolation process to obtain
the effective concentration c(t,X) on interfaces is essential. Moreover, the average
growth rate of a single diatom and corresponding growth of a diatom chain L(t) in


