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A NOTE ON OPTIMAL SPECTRAL BOUNDS FOR

NONOVERLAPPING DOMAIN DECOMPOSITION

PRECONDITIONERS FOR hp–VERSION DISCONTINUOUS

GALERKIN METHODS

PAOLA F. ANTONIETTI, PAUL HOUSTON, AND IAIN SMEARS

Abstract. In this article, we consider the derivation of hp–optimal spectral bounds for a class of
domain decomposition preconditioners based on the Schwarz framework for discontinuous Galerkin
finite element approximations of second–order elliptic partial differential equations. In particular,
we improve the bounds derived in our earlier article [P.F. Antonietti and P. Houston, J. Sci.

Comput., 46(1):124–149, 2011] in the sense that the resulting bound on the condition number of
the preconditioned system is not only explicit with respect to the coarse and fine mesh sizes H
and h, respectively, and the fine mesh polynomial degree p, but now also explicit with respect to
the polynomial degree q employed for the coarse grid solver. More precisely, we show that the
resulting spectral bounds are of order p2H/(qh) for the hp–version of the discontinuous Galerkin
method.
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1. Introduction

In this article, we study a class of nonoverlapping Schwarz preconditioners em-
ployed for the hp–version discontinuous Galerkin finite element (DGFEM) ap-
proximation of second–order elliptic partial differential equations. We stress that
Schwarz-type preconditioners are particularly suited to DGFEMs, in the sense that
uniform scalability of the underlying iterative method may be established without
the need to overlap the subdomain partition of the computational mesh. In a paral-
lel setting, this is a particularly attractive property, since the absence of overlapping
subdomains reduces communication between processors.

In the h–version setting, spectral bounds of order H/h for the underlying pre-
conditioned system may be established, where H and h denote the granularity of
the coarse and fine meshes, respectively, cf., for example, [16, 12, 1, 2, 3, 11, 5].
We note that h-version results generally do not specify the dependence of the spec-
tral bounds on the polynomial degree of the finite element space, as they are left
implicit in the constants carried through the analysis. The extension of the above
results to the hp–version setting has been undertaken in our previous articles [6, 7];
in particular, we showed that the condition number of the preconditioned system
is of order p2H/h, where p denotes the polynomial degree employed on the fine
finite element mesh (of granularity h). While this bound is indeed optimal with
respect to H , h, and p, when the polynomial degree q employed for the coarse grid
solver is kept fixed, the dependence on q may not be explicitly determined from
this analysis. Indeed, on the basis of the computations presented in [6], we con-
jectured a spectral bound on the preconditioned system to be of order p2H/(qh);
in the present article, we now provide a proof of this conjecture. The key aspect
of this analysis is the derivation of an hp–optimal approximation property between
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the coarse and fine finite element spaces. With this in mind, we follow the recent
analysis presented in [24] for problems posed within the H2–context to deduce anal-
ogous results in the present setting. In the context of preconditioning techniques for
high–order DGFEMs, we also mention the recent results presented in [4], where a
quasi-optimal (with respect to h and p) preconditioner is designed in the framework
of substructuring methods for hp–Nitsche-type discretizations, the BDDC and mul-
tilevel schemes for hp–spectral DGFEMs of [14, 13], and the uniform (with respect
to h and p) preconditioner based on a suitable space splitting analyzed in [8].

This article is organised as follows. In Section 2 we introduce the model problem,
together with its hp–version DGFEM discretization. Section 3 derives a crucial
result concerning the approximation of discontinuous functions by a conforming
H1-approximant. In Section 4 we recall the additive and multiplicative Schwarz
preconditioners analyzed in [6]. Finally, hp–optimal spectral bounds are deduced
in Section 5 which are explicit with respect to both the fine and coarse mesh sizes
h and H , respectively, as well as the polynomial degrees p and q exploited within
the fine and coarse mesh solvers, respectively. Throughout this article, we use the
notation x . y to signify that there exists a positive constant C, independent of
the discretization parameters, such that x ≤ C y.

2. Discontinuous Galerkin methods

Given a bounded, convex polygonal/polyhedral domain Ω ⊂ Rd, d = 2, 3, and
a function f ∈ L2(Ω), we consider the following model problem: find u ∈ H1

0 (Ω)
such that

(1)

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω).

Let Th = {K} be a shape-regular, quasi-uniform, conforming decomposition of
Ω with granularity h = maxK∈Th

hK, where hK denotes the diameter of element
K, K ∈ Th. We assume that every element K ∈ Th is the image of a fixed master

element K̂, i.e., K = FK(K̂), where K̂ is either the open unit d-simplex or the open
unit hypercube in Rd, d = 2, 3. We collect all the interior and boundary faces of
Th in the sets FI

h and FB
h , respectively, and set Fh = FI

h ∪ FB
h .

Next we introduce standard jump and average trace operators, cf. [10]. To this
end, given an interior face F ∈ FI

h , shared by two neighboring elements K± ∈ Th,
we write v± to denote the trace of a (sufficiently regular) function v on the face
F , taken within the interior of K±, respectively. Similarly, given a (sufficiently
regular) vector-valued function q, q± is defined in an analogous (component-wise)
manner. With this notation, we define

[[q]] = q+ · n+ + q− · n−, [[v]] = v+n+ + v−n−,

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−),

where n± denotes the unit outward normal vector on the boundary of K±, respec-
tively. On a boundary face F ∈ FB

h , we set [[q]] = q · n, [[v]] = vn, {{q}} = q, and
{{v}} = v, where n denotes the outward unit normal vector on the boundary ∂Ω of
the computational domain Ω.

Given an integer p ≥ 1, the polynomial degree, the corresponding hp–DGFEM
finite element space is defined by

(2) Vhp = {u ∈ L2(Ω) : u ◦ FK ∈ Mp(K̂) ∀ K ∈ Th},

where Mp(K̂) is either the space Pp(K̂) of polynomials of degree at most p on K̂, if

K̂ is the reference d-simplex, or the space Qp(K̂) of all tensor–product polynomials


