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EQUIVALENCE BETWEEN RIEMANN-CHRISTOFFEL

AND GAUSS-CODAZZI-MAINARDI CONDITIONS

FOR A SHELL

DANIELLE LÉONARD-FORTUNÉ, BERNADETTE MIARA, AND CLAUDE VALLÉE

Abstract. We establish the equivalence between the vanishing three-dimensionnal Riemann-

Christoffel curvature tensor of a shell and the two-dimensionnal Gauss-Codazzi-Mainardi compat-
ibility conditions on its middle surface. Additionally we produce a new proof of Gauss theorema
egregium and Bonnet theorem (reconstructing a surface from its two fundamental forms). This is

performed in the very elegant framework of Cartan’s moving frames.
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1. Introduction

Let D ⊂ R3 be a compact, connected, simply-connected manifold with boundary
of class C2. Let X = (X1, X2, X3) be a system of Cartesian coordinates and
x = (x1, x2, x3) be a system of curvilinear coordinates in R3. The purpose of this
paper is to revisit the integrability of the system of nonlinear partial differential
equations (PDE)

(1)
∑

k,l=1,..3

∂xk

∂Xi
δkl

∂xl

∂Xj
= gij(X), i, j = 1, 2, 3.

where g is a regular, twice covariant, positive definite bilinear form, for example of
class C2(D). In some of their previous works Vallée and Fortuné have already ad-
dressed this question in the framework of Darboux’s instantaneous rotation vectors
[9, 10, 5]. We consider again this question by using Cartan setting as introduced
in [2] . Let us note that the interest of our approach is that it does not rely on the
knowledge of the radii of curvature nor on the principal directions of the shell as in
[7].

The plan of this work is as follows: in the next section, for the sake of clarity
we recall some definitions and properties satisfied by the metric, in section 3 we
establish the Riemann-Christoffel compatibility conditions for a three-dimensional
Riemannian manifold. In section 4 with the same Frobenius approach we estab-
lish the Gauss-Codazzi-Mainardi conditions for a surface embedded in R3. As a
by-product, Weingarten’s condition on the normal at each point of the surface is
therefore recovered. In section 5 we address the equivalence of Riemann-Christoffel
and Gauss-Codazzi-Mainardi compatibility conditions for a shell. Finally in section
6 we state Gauss Theorema egregium and Bonnet reconstruction theorem.

2. Notations, lemmas and assumptions

Let ε and δ be respectively the Levi-Civita symbol, and the Kronecker symbols.
Einstein summation convention of repeated indices and exponents is applied. In
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Rn, the identity matrix is denoted In. The transpose of the matrix R is the matrix
Rt. The scalar product of two vectors u and v with components ui and vi is denoted

u · v = δiju
ivj , i, j = 1, ...n.

Let ω and λ be two 1-forms with components ωk and λk. We define their tensor
product as the covariant tensor ω ⊗ λ with components:

(ω ⊗ λ)ij = ωiλj , i, j = 1, ..., n.

Now let us enunciate two elementary results that we will use repeatedly.
Lemma 2.1 (i) Let g be a given positive symmetric bilinear form in Rn × Rn,
there exists n independent 1-form ωk (the volume n-form ω1∧ω2∧ ...∧ωn does not
vanish) such that g can be expanded:

(2) g = δkl ω
k ⊗ ωl.

(ii) The form g can be defined by it covariant (gij) and contravariant (gkl) compo-
nents related by

gijg
jk = δki .

Let us denote by (ek) the dual vector basis associated to (ωk), i.e. ωk(el) = ωk
i e

i
l =

δkl and g−1 whose components are (gkl) can be expanded:

g−1 = δij ei ⊗ ej .

(iii) The expansion (2) is not unique. If there exists a second expansion such that
g(x) = δkl ζ

k ⊗ ζl and if the signs of the n-forms ω1 ∧ω2...∧ωn and ζ1 ∧ ζ2...∧ ζn

are the same, then there exists a rotation R ∈ SO(n) such that:

ζk = Rk
l ω

l.

In the sequel Latin indices or exponents take their value in the set {1, 2, 3},
Greek indices or exponents take their value in the set {1, 2}.
For n = 3 the exterior product of two 1-forms ω and λ is the 2-form ω ∧ λ with
components

(ω ∧ λ)i = δij εjkl ωkλl, i, j, k, l = 1, ...3.

Let us consider two vectorial 1-forms ω = (ω1, ω2, ω3) and λ = (λ1, λ2, λ3) we use
the compact expression ω ∧ λ to represent the vectorial 2-form with components
(ω∧λ)i = δij εjkl ω

k∧λl, i, j, k, l = 1, ...3. For scalar 1-forms ω, λ we remark that
ω∧λ = −λ∧ω. However, for vectorial 1-forms ω = (ω1, ω2, ω3) and λ = (λ1, λ2, λ3)
we remark that

ω ∧ λ = λ ∧ ω.

For example we have (ω ∧ λ)1 = ω2 ∧ λ3 − ω3 ∧ λ2 = λ2 ∧ ω3 − λ3 ∧ ω2 = (λ ∧ ω)1.

Lemma 2.2 Let R be a rotation field. There exists a vectorial 1-form λ = (λk)
such that:

dR = Rj(λ),

where d represents the exterior derivative and j(λ) =

 0 −λ3 +λ2

+λ3 0 −λ1

−λ2 +λ1 0

 .

The proof is based upon the relationship RtR = I3 which implies that RtdR is
antisymmetric. For all vectorial 1-forms λ, ω a direct computation yields:

j(λ) ∧ ω = λ ∧ ω.

Let us remark that j(λ) is a vectorial 1-form for the Lie algebra so(3) of SO(3).


