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BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT

VISCOELASTIC FLUID FLOW MODEL
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Abstract. In this paper, we discuss the backward Euler method along with its linearized version
for the Kelvin-Voigt viscoelastic fluid flow model with non zero forcing function, which is either
independent of time or in L∞(L2). After deriving some bounds for the semidiscrete scheme,
a priori estimates in Dirichlet norm for the fully discrete scheme are obtained, which are valid
uniformly in time using a combination of discrete Gronwall’s lemma and Stolz-Cesaro’s classical
result for sequences. Moreover, an existence of a discrete global attractor for the discrete problem
is established. Further, optimal a priori error estimates are derived, whose bounds may depend
exponentially in time. Under uniqueness condition, these estimates are shown to be uniform
in time. Even when f = 0, the present result improves upon earlier result of Bajpai et al.

(IJNAM,10 (2013),pp.481-507) in the sense that error bounds in this article depend on 1/
√
κ as

against 1/κr , r ≥ 1. Finally, numerical experiments are conducted which confirm our theoretical
findings.
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1. Introduction

Let Ω be a bounded convex polygonal or polyhedron domain in IRd (d = 2 or 3)
with boundary ∂Ω. Consider the following system of equations described by the
Kelvin-Voigt viscoelastic fluid flow model (see, [20]): Find a pair (u, p) such that

∂u

∂t
+ u · ∇u− κ∆ut − ν∆u + ∇p = f(x, t), x ∈ Ω, t > 0(1)

with incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(2)

initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0 on ∂Ω, t ≥ 0.(3)

Here, u = u(x, t) denotes the velocity vector, p = p(x, t) is the pressure, ν > 0
represents the kinematic coefficient of viscosity and κ is the retardation in time
parameter. For some applications, we refer to [5],[6], [7] and references, therein.

Now, we quickly recall some theoretical developments on the Kelvin-Voigt model.
Based on proof techniques of Ladyzenskaya [17] for establishing the wellposedness
of the Navier Stokes system, Oskolkov [19, 20] has proved an existence of a global
unique ‘almost’ classical solution in finite time interval for the initial and boundary
value problem (1)-(3). Investigations on existence and uniqueness results for all
time t > 0 have been further continued by him and his collaborators under various
conditions on the forcing function f , see [22] and [23].

For earlier results on numerical methods applied to the problem (1)-(3), we refer
to [1] and [21]. Under the assumption that the solution is asymptotically stable
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as t → ∞, Oskolkov [21] has proved convergence of spectral Galerkin approxima-
tions to the problem (1)-(3) in semi time axis t ≥ 0. Later on, Pani et al. [26]
have employed a variant of nonlinear semidiscrete spectral Galerkin method and
derived optimal error estimates. Recently, Bajpai et al. [1] have applied finite
element methods to discretize spatial variables and have established optimal error
estimates for the velocity in L∞(L2) as well as L∞(H1)-norms and for the pressure
term in L∞(L2)- norm of the Kelvin-Voigt model with zero forcing function. It
is, further, shown that both exact solution and semidiscrete solution decay expo-
nentially in time. Moreover, the error estimates have similar exponential decay
property. Subsequently, Bajpai et al. [2] have analyzed both first order backward
Euler and second order backward difference schemes for the completely discretiza-
tion of the problem (1)-(2), when the forcing function f = 0. Firstly, an existence
result is shown for the discrete nonlinear problem using a variant of Brouwer fixed
point argument and optimal error estimates which reflect exponential decay prop-
erty are proved. Note that their error bounds contain term like 1

κr , where r ≥ 1.
For related articles on Navier-Stokes equations, see [11] and on Oldroyd model,
refer to [9]-[10], [12], [24]-[27], [29]-[32].

When the non-zero forcing function f ∈ L∞(L2), which is crucial in the study of
dynamical system, Pany et al. [27] have applied semidiscrete finite element method
for the problem (1)-(3) and have proved the existence of a global attractor. New
regularity results for the exact solution are established which are valid both uni-
formly in time as t 7→ ∞ and in κ as κ 7→ 0. With the help of Sobolev-Stokes
projection introduced in [1], a priori optimal error estimates for the velocity in
L∞(L2) as well as L∞(H1)-norms and for the pressure term in L∞(L2)-norm are
derived. Under uniqueness assumption, it is shown that error bounds are valid uni-
formly in time. When κ = O(h2δ), δ > 0 small, where h is the spatial discretization
parameter, it is, further, established that quasi-optimal error estimates are valid
for small κ. Moreover, this articles concludes with several numerical experiments,
which are based on backward Euler method with out error analysis. In continuation
to the investigation in [27] on semidiscrete problem, in this article, a backward Eu-
ler method along with its linearized version for the time discretization is analyzed.
A priori bounds for the discrete solution, specially in the Dirichlet norm are estab-
lished using a combination of discrete Gronwall’s lemma and Stolz-Cesaro theorem
(see, pp 85-87 of [18]) for sequences, which can be thought of a discrete version of
the L’Hospital’s rule. It is, further, shown that the discrete problem has a global
discrete attractor and then optimal error estimates are derived. More precisely, the
following estimates are obtained

‖uh(tn) −Un‖ ≤ Ck,

and

‖(ph(tn) − Pn)‖ ≤ C√
κ
k,

where the pair (Un, Pn) is the fully discrete solution of the backward Euler method
and the pair (uh(tn), ph(tn)) is the semi-discrete solution at time level tn. Since
constants in these error bounds depend on eCt, these results as in the Navier-Stokes
case are valid locally. But under the uniqueness assumption, it is, further, shown
that error estimates are valid uniformly in time. Then, using the contribution of
semi-discrete error estimates from [27], we, finally, obtain error estimates for the
complete discrete scheme.


