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ERROR ANALYSIS OF A FINITE DIFFERENCE SCHEME FOR THE

EPITAXIAL THIN FILM MODEL WITH SLOPE SELECTION WITH AN

IMPROVED CONVERGENCE CONSTANT

ZHONGHUA QIAO, CHENG WANG, STEVEN M. WISE, AND ZHENGRU ZHANG

Abstract. In this paper we present an improved error analysis for a finite difference scheme for solving
the 1-D epitaxial thin film model with slope selection. The unique solvability and unconditional energy
stability are assured by the convex nature of the splitting scheme. A uniform-in-time Hm bound of the
numerical solution is acquired through Sobolev estimates at a discrete level. It is observed that a standard
error estimate, based on the discrete Gronwall inequality, leads to a convergence constant of the form
exp(CTε−m), where m is a positive integer, and ε is the corner rounding width, which is much smaller than
the domain size. To improve this error estimate, we employ a spectrum estimate for the linearized operator
associated with the 1-D slope selection (SS) gradient flow. With the help of the aforementioned linearized
spectrum estimate, we are able to derive a convergence analysis for the finite difference scheme, in which
the convergence constant depends on ε−1 only in a polynomial order, rather than exponential.
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1. Introduction

The epitaxial thin film growth model with slope selection, also known as the regularized
Cross-Newell equation [15, 23], has been used as a model for thin film roughening and
coarsening [30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 41, 50]. This equation contains a continuum-
level description of the Ehrlich-Schwoebel barrier, which leads to an uphill adatom “current”
and ultimately the formation of hill and valley structures [31, 37]. The model may be viewed
as a gradient flow with respect to the Aviles-Giga-type energy functional [3, 29, 34, 37], which
is given by
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where Ω = (0, L), φ : Ω → R is the height of the film, and ε > 0 is a positive constant that
is much smaller that the domain size L. As is standard, we assume that φ is periodic. The
chemical potential is defined to be the variational derivative of the energy (1), i.e.,

(2) µ := δφE = ε−1
[

−∂x(|∂xφ|
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]

+ ε∂4xφ.

The linear term ε∂4xφ models surface diffusion. The remainder of the terms in the chemical
potential model the Ehrlich-Schwoebel barrier, which gives rise to “facets” on the film
surface. The parameter ε > 0 describes the strength of the surface diffusion. More surface
diffusion leads to more corner rounding at the junction of two facets. The epitaxial thin
film model with slope selection is the L2 gradient flow associated with the energy (1):

(3) ∂tφ = −µ = ε−1
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We will refer to this equation as the slope selection (SS) equation. It is easy to see that the
SS equation (3) is mass conservative, and the energy (1) is non-increasing in time along the
solution trajectories of (3). Interestingly, one will also observe that, at least in one spatial
dimension, the slope function, ∂xφ satisfies a Cahn-Hilliard equation:

(4) ∂t (∂xφ) = ε−1∂2x

[

(∂xφ)
3
− ∂xφ

]

− ε∂4x (∂xφ) .

Energy stability is an important issue for long-time numerical simulation. Convex-
splitting time discretization schemes, popularized by Eyre’s work [18], have some desirable
properties, including unique solvability and unconditional energy stability. See the related
works for the Cahn-Hilliard equation [17, 26], the phase field crystal (PFC) and modified
phase field crystal (MPFC) equations [4, 5, 28, 46, 47, 49], the Cahn-Hilliard-Hele-Shaw
(CHHS) and related models [9, 14, 16, 22, 39, 48], et cetera. In particular, for the epi-
taxial thin film growth models, the authors recall the first order convex splitting scheme
reported in [45], the second order splitting scheme in [43], and their extensions to the no-
slope-selection model [8, 10].

We are focused on error estimates and convergence analyses for the convex splitting
scheme applied to the 1-D SS model in this work. Given any fixed final time T , such an
error estimate could be derived through a standard process of consistency and stability
analyses; the convergence constant is independent of the time step s and spatial grid size h.
However, a careful calculation shows that, this constant depends singularly on T and the
reciprocal of the surface diffusion parameter ε: the specific form is exp (Cε−mT ), where m
is a positive integer. As usual, this form comes from the application of a discrete Gronwall
inequality in the analysis.

On the other hand, the authors observe that, there have been a few works on the improved
convergence constant for the Cahn-Hilliard flow. In particular, Feng and Prohl [21] proved –
for a first-order-in-time backward Euler scheme coupled with a mixed finite element spatial
discretization scheme – that the convergence constant is of order exp (C0T ) ε

−m0 , for some
positive integer m0 and a constant C0 independent of ε. In other words, the exponential
dependence on ε−1 may be replaced by a polynomial dependence. Two more recent works
of Feng, Li and Xing [19, 20] applied a similar technique to analyze the first-order-in-time,
discontinuous Galerkin schemes for the Allen-Cahn and Cahn-Hilliard equations. Both
the backward Euler and convex splitting temporal discretizations were included in their
recent works. Such an elegant improvement was based on a subtle spectrum analysis for the
linearized Cahn-Hilliard operator (with certain given structure assumptions of the solution),
provided in earlier PDE analyses [1, 2, 11, 12, 13].

In this article, we extend this idea and utilize the related methodology to derive a sim-
ilar estimate for the first order convex splitting, finite difference scheme applied to the
1-D SS equation. The multi-dimensional SS equation is much more challenging than the
Cahn-Hilliard equation, due to the higher degree of nonlinearity of the 4-Laplacian term.
Meanwhile, we observe that, the one-dimensional SS equation takes a very similar structure
as the corresponding Cahn-Hilliard one, and the linearized spectrum estimate can be de-
rived in the same manner. This estimate plays an essential role in the error estimate with
an improved constant.

Our analysis will proceed in the following way: to start with, the leading order energy
stability yields an H2 estimate of the numerical solution, independent on the final time.
Subsequently, a uniform-in-time Hm (with m ≥ 3) bound of the numerical solution may be
derived with the help of higher order energy estimates and repeated application of Sobolev
inequalities at the discrete level. These bounds are dependent on the initialHm data and ε−1


