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Abstract. In this paper, we provide the optimal convergence rate of a posteriori error estimates
for the local discontinuous Galerkin (LDG) method for the second-order wave equation in one
space dimension. One of the key ingredients in our analysis is the recent optimal superconvergence
result in [W. Cao, D. Li and Z. Zhang, Commun. Comput. Phys. 21 (1) (2017) 211-236]. We
first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm
to (p + 1)-degree right and left Radau interpolating polynomials under mesh refinement. The
order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are
used. We use these results to show that the leading error terms on each element for the solution
and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. These
new results enable us to construct residual-based a posteriori error estimates of the spatial errors.
We further prove that, for smooth solutions, these a posteriori LDG error estimates converge, at
a fixed time, to the true spatial errors in the L2-norm at O(hp+2) rate. Finally, we show that
the global effectivity indices in the L2-norm converge to unity at O(h) rate. The current results
improve upon our previously published work in which the order of convergence for the a posteriori

error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our
proofs are valid for arbitrary regular meshes using P p polynomials with p ≥ 1. Several numerical
experiments are performed to validate the theoretical results.
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1. Introduction

In this paper, we analyze a residual-based a posteriori error estimates of the
spatial errors for the semi-discrete local discontinuous Galerkin (LDG) method
applied to the following one-dimensional linear wave equation

(1a) utt = uxx + cu, x ∈ [a, b], t ∈ [0, T ],

subject to the initial and periodic boundary conditions

u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ [a, b],(1b)

u(a, t) = u(b, t), ux(a, t) = ux(b, t), t ∈ [0, T ],(1c)

where c is assumed to be a constant. For the sake of simplicity, we only consider the
case of periodic boundary conditions. However, this assumption is not essential.
We note that if other boundary conditions (e.g., Dirichlet or Neumann or mixed
boundary conditions) are chosen, the LDG method can be easily designed; see
[6, 10, 19, 39] for some discussion. In our analysis, the initial conditions are assumed
to be sufficiently smooth functions so that the exact solution, u(x, t), is a smooth
function on [a, b]× [0, T ].
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The discontinuous Galerkin (DG) method was first developed in the early 1970s
by Reed and Hill [34] for solving hyperbolic conservation laws containing only first
order spatial derivatives. However, in the last two decades it has become attractive
as a powerful simulation tool for solving many partial differential equations. The
DG method is a class of finite element methods, using discontinuous, piecewise
polynomials as the numerical solution and the test functions. The DG method
combines the best proprieties of the classical continuous finite element and finite
volume methods such as consistency, flexibility, stability, conservation of local phys-
ical quantities, robustness and compactness. Recently, DG methods become highly
attractive and popular, mainly because these methods are high-order accurate,
nonlinear stable, highly parallelizable, easy to handle complicated geometries and
boundary conditions, and capable to capture discontinuities without spurious os-
cillations. Since then the DG method has been analyzed and extended to a wide
range of applications. In particular, for time dependent problems, Cockburn and
Shu [26] extended the DG method to solve first-order hyperbolic partial differen-
tial equations of conservation laws. They used a method of lines which consists of
applying the DG scheme to approximate the problem in space and then to apply a
Runge-Kutta scheme in time to obtain an RKDG scheme. They further developed
the local DG (LDG) method for convection-diffusion problems [27]. The proceeding
of Shu [36] contain a more complete and current survey of the DG method and its
applications.

The LDG method we discuss in this paper is an extension of the DG method
aimed at solving differential equations containing higher than first-order spatial
derivatives. The LDG method for solving convection-diffusion problems was first
introduced by Cockburn and Shu in [27]. LDG methods are robust and high-order
accurate, can achieve stability without slope limiters, and are locally (elementwise)
mass-conservative. This last property is very useful in the area of computational
fluid dynamics, especially in situations where there are shocks, steep gradients or
boundary layers. Moreover, LDG methods are extremely flexible in the mesh-
design; they can easily handle meshes with hanging nodes, elements of various
types and shapes, and local spaces of different orders. They further exhibit strong
superconvergence that can be used to estimate the discretization errors. LDG
schemes have been successfully applied to hyperbolic, elliptic, and parabolic partial
differential equations [6, 26, 28, 29, 19, 38, 33, 27, 15, 18, 19, 7, 2, 17, 3, 4], to
mention a few. A review of the LDG methods is given in [7, 11, 17, 25, 23, 16, 24,
19, 37, 39, 14].

In [6], we investigated the superconvergence properties of the LDG method for
the second-order wave equation in one space dimension. We performed an error
analysis on one element and showed that the p-degree LDG solution and its spatial
derivative are O(hp+2) superconvergent at the roots of (p + 1)-degree right and
left Radau polynomials, respectively. Computational results showed that global
superconvergence holds for LDG solutions. We used these results to construct
asymptotically correct a posteriori error estimates by solving local steady problem
with no boundary conditions on each element. However, we only presented several
numerical results suggesting that the global spatial error estimates converge to
the true errors under mesh refinement where temporal errors are assumed to be
negligible. In [10], we analyzed the LDG method introduced by the author in [6]
for solving the one-dimensional second-order wave equation. We used a suitable
projection of the initial conditions for the numerical scheme and proved optimal L2


