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A SIMPLE FINITE ELEMENT METHOD OF

THE CAUCHY PROBLEM FOR POISSON EQUATION

XIAOZHE HU, LIN MU, AND XIU YE

Abstract. In this paper, we introduce a simple method for the Cauchy problem. This new finite
element method is based on least squares methodology with discontinuous approximations which
can be implemented and analyzed easily. This discontinuous Galerkin finite element method is
flexible to work with general unstructured meshes. Error estimates of the finite element solution
are derived. The numerical examples are presented to demonstrate the robustness and flexibility
of the proposed method.
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1. Introduction

We consider the Cauchy problem for Poisson equation

∆u =f, in Ω,

u =0, on Γ1,

∇u · n =g, on Γ1,

(1)

where Ω is a bounded convex polytopal domain in R
d with d = 2, 3 and ∂Ω = Γ1∪Γ2.

Assume that Γ1 is simply connected.

The Cauchy problem (1) is well-known to be ill-posed [1, 4]. It has appli-
cations in many different areas such as plasma physic, electrocardiography, and
corrosion non-destructive evaluation (e.g., [5, 12, 16, 21]). Due to the ill-posedness,
the numerical approximation of the Cauchy problem is very difficult and challeng-
ing. Traditionally, regularization techniques, such as Tikhonov regularization [26]
and the quasi-reversibility approach [23], were used to provide robust numerical
schemes. Many different finite element methods have also been developed for solv-
ing the Cauchy problem (1). In [15, 24, 25], Galerkin type approaches are proposed
based on structured grids or special formulation of the continuous problem. The
regularization techniques are also used in finite element settings, e.g., [6, 3, 7, 13].
In [2, 11, 19, 18], the Cauchy problem (1) is reformulated as minimization problems
and then solved numerically with possible regularizations. More recently, primal-
dual formulation is proposed and solved by discontinuous Galerkin (DG) finite
element methods with suitable stabilization/regularization, see [9, 10].

The purpose of this paper is to develop a simple finite element method to ap-
proximate the solution of the Cauchy problem (1) when it exists and is unique.
This method is designed aiming on easy implementation and easy error analysis.
The methodology of the scheme is combining the least squares technique with dis-
continuous approximations. Suitable stabilization terms are added to ensure the
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stability of the discretization. As a result, our method leads to a symmetric and
positive definite linear system of equations and is flexible to use on general polygonal
meshes with hanging nodes. We prove that our discontinues finite element solution
approaches to the solution of the model problem (1) when the mesh size approaches
to zero. Convergence rate are studied in both energy norm and L2-norm based on
the conditional stability of the continues Cauchy problem. Comparing with exist-
ing methods, our approach is attractive due to its simplicity. The numerical results
also show the efficiency of the proposed approach which confirms our theoretical
results.

The rest of the paper is organized as follows. In Section 2, we recall Cauchy
problem and its conditional stability results based on a traditional weak formula-
tion. Our new simple discretization is given in Section 3. We study its stability and
error estimates in Section 4 and 5, respectively. Finally, we present some numerical
experiments to demonstrate the stability of the WG formulation in Section 6 .

2. Cauchy Problem

We denote the standard Lebesgue sapces by L2(D) and D ∈ R
d, d = 2, 3, with

corresponding norms ‖ · ‖L2(D) (or ‖ · ‖D). Hs(D) denote the standard Sobolev
space of index s ≥ 0 along with the corresponding norm and semi-norm ‖ · ‖Hs(D)

(or ‖ · ‖s,D) and | · |Hs(D) (or | · |s,D), respectively.

For the Cauchy problem (1), if the (d − 1)-measure of Γ2 is nonempty, it is
an ill-conditioned problem. In practice, as shown in [4], such Cauchy problem
is not well-posed due to measurement errors. However, following the traditional
arguments, if the underlying physical process is stable, i.e., if the boundary data
are known on the whole boundary, then the problem is well-posed, it is natural to
assume that the Cauchy problem (1) has a unique solution in the idealized case with

unperturbed data. Therefore, we assume that f ∈ L2(Ω), g ∈ H
1

2 (Γ1), and that
there is a unique solution u ∈ H2(Ω) satisfies (1). Our analysis will be based on this
assumption and the so-called conditional stability described later in Section 2.2.

2.1. A Traditional Weak Formulation. In order to introduce the conditional
stability of the Cauchy problem (1), we need to first look at the weak formulation
of the Cauchy problem (1). Following [1], we introduce two Sobolev spaces

H1
Γ1
(Ω) := {v ∈ H1(Ω) : v|Γ1

= 0},

and

H1
Γ2
(Ω) := {v ∈ H1(Ω) : v|∂Ω\Γ1

= 0}.

The weak formulation for (1) is: find u ∈ H1
Γ1
(Ω) such that

(2) a0(u, v) = l(v), ∀ v ∈ H1
Γ2
(Ω),

where

a0(u, v) :=

∫

Ω

∇u · ∇v dx,

and

l(v) := −

∫

Ω

fvdx+

∫

Γ1

gvds.

Again, we are not assuming this weak formulation of Cauchy problem is well-posed
since inf-sup stability does not hold in general [4].


