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A HYBRIDIZABLE WEAK GALERKIN METHOD

FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE

NUMBER: hp ANALYSIS

JIANGXING WANG AND ZHIMIN ZHANG

Abstract. In this paper, an hp hybridizable weak Galerkin (hp-HWG) method is introduced to
solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a
specific parameter and using the duality argument, we prove that the proposed method is stable
under certain mesh constraint. Error estimate is obtained by using the stability analysis and
the duality argument. Several numerical results are provided to confirm our theoretical results.
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1. Introduction

In this paper, we develop an hp-version hybridizable weak Galerkin (hp-HWG)
method to solve the Helmholtz equation with Robin boundary condition:

∆u + κ2u = f̃ in Ω,(1a)

u = u0 on Γ1,(1b)

∂u

∂n
+ iκu = g̃ on Γ2,(1c)

where Ω ∈ R
d, d = 2, 3, is a bounded convex Lipschitz domain, Γ1 and Γ2 form a

partition of the boundary ∂Ω, κ > 0 is the wave number, i =
√
−1 is the imaginary

unit, and n denotes the unit outward normal to ∂Ω. The condition (1c) is the first
order approximation of the radiation condition for Helmholtz scattering problem.

The Helmholtz equation has important applications in electrodynamics, espe-
cially in optics and acoustics involving time harmonic wave propagation. The
Helmholtz system is not positive definite. When the wave number κ ≫ 1, the
solution is highly oscillatory. It is very challenging to design an efficient numerical
method to solve the Helmholtz equation with high wave number.

In the literature, there have been extensive investigations devoted to numeri-
cal approximations for Helmholtz equations with various boundary conditions. In
particular, the finite element method (FEM) has been widely used [3, 7, 17, 18,
21, 22, 35]. It has been shown that the H1-errors of pth order FEM solutions to
the Helmholtz equation have accuracy order O(κp+1hp) [21, 22, 35, 36]. In [7],
Wu et al. analyzed the preasymptotic error of high order FEM and continuous
interior penalty FEM (CIP-FEM) for Helmholtz equation with large wave num-
ber. They proved that, when κ2p+1h2p is sufficiently small, the pollution errors are
of order k2p+1h2p. Discontinuous Galerkin methods have also been used to solve
Helmholtz equations [8, 11, 12, 13, 22, 30]. Detailed analyses have been carried out
in [1, 2] on the discrete dispersive relation by hp-FEM and high-order discontinuous
Galerkin methods. In [28, 29], Shen and Wang used the spectral method to solve
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the Helmholtz equation in both interior and exterior domains. Their results indi-
cate that high-order methods are preferable, if not necessary, for highly oscillatory
problems. In [4, 5, 14], hybridizable discontinuous Galerkin methods were used to
solve the Helmholtz equation.

The weak Galerkin (WG) method was first introduced by Wang and Ye [32]
for second-order elliptic equations. It can be derived from the variational form
of the continuous problem by replacing derivatives involved by weak derivatives
with some stabilizers. WG methods have been applied to solve many problem
[20, 23, 24, 25, 26, 31, 32, 33, 34]. The HWG method [27] was introduced by Mu
et al., which applies Lagrange multiplier so that the computational complexity can
be significantly reduced.

In this paper, we will develop an hp-HWG method to solve the Helmholtz equa-
tion with high wave number. The main difficulty in the analysis of the numerical
method is due to the strong indefiniteness of the Helmholtz equation. As a conse-
quence, the stability of the numerical approximation is hard to establish. In this
work, we use the duality argument to show that the proposed hp-HWG method is
stable under proper mesh condition. This stability result not only guarantees the
existence of the HWG method but also plays an important role in the error analy-
sis. In particular, we first construct an auxiliary problem and establish its hp-HWG
error estimates; then we combined the estimates with the stability result to derive
the error estimates of the hp-HWG scheme for the original Helmholtz problem.

Notation. In this paper, standard notations for Sobolev spaces (e.g., L2(Ω),
Hk(Ω) for k ∈ N, etc.) and the associated norms and seminorms will be adopted.
Plain and bold fonts are used for scalars and vectors, respectively.

The rest of this paper is organized as follows. The hp-HWG scheme for the
Helmholtz equation is developed in Section 2. Section 3 is devoted to show the
stability result of the numerical scheme. In Section 4, we derive the error estimate
of the numerical scheme. Numerical results are given in Section 5 to confirm the
theoretical results.

2. Weak Divergence and the hp-HWG Scheme

2.1. Weak divergence. Let K be a subdomain in Ω. A weak vector-valued func-
tion on K refers to a vector field v = {v0,vb}, where v0 ∈ [L2(K)]d carries the
information of v in K, and vb ∈ [L2(∂K)]d represents partial or full information of
v on ∂K. It is important to point out that vb may not necessarily be related to
the trace of v0 on ∂K, but shall be well-defined. Denote by V(K) the space of all
weak vector-valued functions on K; that is

V(K) = {v = {v0,vb} : v0 ∈ [L2(K)]d,vb ∈ [L2(∂K)]d}.
A weak divergence can be taken for any vector field in V(K) by following the

definition [27].

Definition 2.1. For any v ∈ V(K), the weak divergence of v, denoted by ∇w · v,
is defined as a linear functional on H1(K), whose action on each φ ∈ H1(K) is
given by

(2) (∇w · v, φ)K = −(v0,∇φ)K+ < vb · n, φ >∂K ,

where (·, ·)K and < ·, · >∂K stand for the inner products in L2(K) and L2(∂K),
respectively.

Next, we introduce a discrete weak divergence operator (∇w,k·) in a polynomial
subspace of the dual of H1(K) [27].


