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A PRIORI ERROR ANALYSIS OF THE LOCAL DISCONTINUOUS

GALERKIN METHOD FOR THE VISCOUS BURGERS-POISSON

SYSTEM

NATTAPOL PLOYMAKLAM, PRATIK M. KUMBHAR, AND AMIYA K. PANI

Abstract. In this paper, we propose and analyze the local discontinuous Galerkin method for the
viscous Burgers-Poisson system. The proposed method preserves two invariants and hence, yields
solutions even for long time. A priori error estimates, which are of order O(hk+1), when poly-
nomials of degree k ≥ 1 are used for approximating solutions are established. Finally, numerical
experiments are conducted to confirm our theoretical results.
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1. Introduction

We consider the following coupled system of viscous Burgers and Poisson equa-
tions: find a pair of solutions (u, φ) such that

(1) ut + (
u2

2
− φ)x − ǫuxx = 0, x ∈ [0, L] = I, t > 0,

(2) φxx − φ = u,

with ǫ > 0 and periodic boundary conditions:

u(t, L) = u(t, 0), ux(t, L) = ux(t, 0) and

φ(t, L) = φ(t, 0), φx(t, L) = φx(t, 0), for t > 0,(3)

and initial condition:

(4) u(0, x) = u0(x), x ∈ I.

This problem is one dimensional version of the Navier-Stokes-Poisson system, which
often models the transport of charged particles under the influence of the self-
consistent electro-static potential as a force arising in the study of collision of dusty
plasma, see [7], [9]. This system admits conservation of momentum and L2 a priori
bound. Global existence of weak solutions to the Navier-Stokes-Poisson system
with large initial data has been proved by Donatelli [6] using Galerkin method and
P.L.Lions theory, [13]. Without much difficulty, this theory can be extended to
include the global existence of a unique solution for the Burgers-Poisson system
(1)-(4).

In recent years, Discontinuous Galerkin (DG) methods are becoming popular
due to their flexibility in local mesh adaptivity, element wise conservative property
and in taking care of nonuniform degrees of approximation of the solution whose
smoothness may exhibit a wide variation over the computational domain. These
methods are using completely discontinuous piecewise-polynomials for the numer-
ical solution and the test functions. These schemes are first proposed for solving
first order PDEs such as nonlinear conservation laws, [14], [1], [2], [3], [4]. The
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local discontinuous Galerkin (LDG) method is an extension of DG methods for
solving higher order PDEs. It was first designed for convection-diffusion equations
in [5], and has been extended to other higher order wave equations, including the
KdV equation, [19], [16], [11], [17], see, also the recent review paper [18] on the
LDG methods for higher order PDEs. The idea of the LDG method is to rewrite
higher order equations into a first order system, and then apply DG schemes on
the system with appropriate choices of numerical fluxes. Related to our problem,
a LDG method was proposed in [12] for the inviscous Burgers-Poisson equation.
This scheme preserves the mass and energy of the smooth solution and was proven
to be optimal convergence for k even.

In this article, LDG method is applied to the viscous Burgers-Poisson system
(1)-(4). Then, it is observed that the semidiscrete system preserves two invariants
and as a result, we prove a priori bounds in L∞(L2) for the discrete solutions. It is,
further, shown that rate of convergence is of order k+1 for approximate solution uh,
when polynomial of order k is used to approximate u. The generalized numerical
fluxes, which depend on a parameter θ ∈ [0, 1/2] are used in the proposed scheme.
For θ = 1/2, it is noted that the order of convergence is optimal as in [12] for even
degree polynomial degrees. When θ ∈ [0, 1/2), optimal error estimates are derived,
but with constants in the error analysis explicitely depend on 1/

√
ǫ, where ǫ is a

viscosity parameter.
We use standard notation for norms and seminorms in Sobolev spaces. Say for

example, for any integer m ≥ 0, we denote by Hm(I), the Hilbert Sobolev space
with norm ‖ · ‖m and seminorm | · |m. We also use the spaces Lp(0, T ;Hm(I)), 1 ≤
p ≤ ∞ as the spaces of functions v such that

∫ T

0 ‖v(s)‖pHm(I) ds < ∞. Denote by

C a positive generic constant, which does not depend on the mesh parameters, but
may vary from context to context in the text.

2. Conservation Properties and A Priori Bounds

This section deals with some conservation properties and a priori bounds for the
viscous Burgers-Poisson system (1)-(4).

Theorem 2.1. Let (u, φ) be a pair of solutions of the coupled system (1)-(4). Then
the following conservation property holds:

(5)

∫ L

0

u(x, t)dx =

∫ L

0

u0(x) dx.

Further, u satisfies

(6)

∫ L

0

|u(x, t)|2dx ≤
∫ L

0

|u0(x)|2 dx.

Proof. Integrating equation (1) with respect to space variable x yields
∫ L

0

ut dx+

∫ L

0

(
u2

2
)x dx−

∫ L

0

φx dx− ǫ

∫ L

0

uxx dx = 0,

which can be rewritten using periodic boundary conditions as

d

dt

∫ L

0

u(t, x) dx = 0.

Integrating above equation with respect to time t yields the equation of conservation
of momentum, that is,

(7)

∫ L

0

u(t, x) dx =

∫ L

0

u(0, x) dx =

∫ L

0

u0(x) dx.


