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A QUADRILATERAL ‘MINI’ FINITE ELEMENT FOR THE

STOKES PROBLEM USING A SINGLE BUBBLE FUNCTION

BISHNU P. LAMICHHANE

Abstract. We consider a quadrilateral ’mini’ finite element for approximating the solution of

Stokes equations using a quadrilateral mesh. We use the standard bilinear finite element space
enriched with element-wise defined bubble functions for the velocity and the standard bilinear

finite element space for the pressure space. With a simple modification of the standard bubble

function we show that a single bubble function is sufficient to ensure the inf-sup condition. We
have thus improved an earlier result on the quadrilateral ’mini’ element, where more than one

bubble function are used to get the stability.

Key words. Stokes equations, mixed finite elements, Mini finite element, inf-sup condition,

bubble function.

1. Introduction

A very simple finite element method for the Stokes problem for a simplicial mesh
is presented by Arnold, Brezzi and Frotin [1], where the velocity space is discretised
by using the standard linear finite element space enriched with element-wise bubble
functions and the pressure space is discretised by using the standard linear finite
element space. The enrichment of the velocity space is done to ensure the stability
of the finite element method, and this increases one vector degree of freedom per
element. An extension of the finite element method to the quadrilateral mesh is
done by Bai [2], where the author enriches the velocity space with more than a
single vector bubble function per element. The inf-sup condition is proved by using
a macro element technique [9], where a single quadrilateral element is used as a
macro element.

In this article we show that with a small modification of the standard bubble
function we can get the stability just by using a single vector bubble function per
element. The main difference with the technique proposed by Bai [2] is that it is
not possible to show the inf-sup condition using a single quadrilateral element as
a macro element. We need to use a macro element consisting of four quadrilateral
elements to prove the inf-sup condition in our situation. Another relevant finite
element method is presented by Lamichhane [8], where two different meshes are
used to discretise the velocity and the pressure space, and a single vector bubble
degree of freedom per element is used to get the stability. The pressure space is
discretised by the space of piecewise constant functions on the dual mesh. However,
the main difficulty of the technique presented by Lamichhane [8] is that the bubble
function is obtained by multiplying the standard bubble function by the gradient
of a bilinear basis function, and hence the bubble function cannot be defined on a
reference element. The standard bubble function on the unit square is the lowest
degree polynomial which vanishes on the boundary of the square. Here we modify
the standard bubble function [1, 2] to get stability of the numerical scheme by using
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a single vector bubble function per element with a continuous pressure approxima-
tion. We also investigate two choices of bubble functions, where both of them can
be defined on a reference element. Thus the main contribution of the paper is to
introduce a modification of the standard bubble function so that the discrete ve-
locity space can be enriched by a single bubble function per element to satisfy the
inf-sup condition for a quadrilateral mesh. The idea can easily be extended to the
three-dimensional case.

2. Stokes equations

This section is devoted to the introduction of the boundary value problem of the
Stokes equations. Let Ω in R2, be a bounded domain with polygonal boundary Γ.
For a prescribed body force f ∈ [L2(Ω)]2, the Stokes equations with homogeneous
Dirichlet boundary condition in Γ reads

(1)
−ν∆u +∇p = f in Ω

divu = 0 in Ω

with u = 0 on Γ, where u is the velocity, p is the pressure, and ν denotes the
viscosity of the fluid.

Here we use standard notations L2(Ω), H1(Ω) and H1
0 (Ω) for Sobolev spaces, see

[4, 6] for details. Let V := [H1
0 (Ω)]2 be the vector Sobolev space with inner product

(·, ·)1,Ω and norm ‖ · ‖1,Ω defined in the standard way: (u,v)1,Ω :=
∑2
i=1(ui, vi)1,Ω,

and the norm being induced by this inner product. We also define another subspace
M of L2(Ω) as

P =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The weak formulation of the Stokes equations is to find (u, p) ∈ V ×P such that

(2)
ν
∫

Ω
∇u : ∇v dx +

∫
Ω

div v p dx = `(v), v ∈ V ,∫
Ω

divu q dx = 0, q ∈ P,

where `(v) =
∫

Ω
f · v dx. It is well-known that the weak formulation of the Stokes

problem is well-posed [7]. In fact, if the domain Ω is convex, and f ∈ [L2(Ω)]2, we
have u ∈ [H2(Ω)]2, p ∈ H1(Ω) and the a priori estimate holds

‖u‖2,Ω + ‖p‖1,Ω ≤ C‖f‖0,Ω,

where the constant C depends on the domain Ω.

3. Finite element discretizations

We consider a quasi-uniform triangulation Th of the polygonal domain Ω, where
Th consists of parallelograms. The finite element meshes are defined by maps from
the reference square K̂ = (0, 1)2 to the actual parallelogram K ∈ Th. Let Q1(K̂)

be the space of bilinear polynomials in K̂. We start with the finite element space
of continuous functions whose restrictions to an element K are obtained by maps
of bilinear functions from the reference element:

(3) Sh :=
{
vh ∈ H1

0 (Ω), vh|K = v̂h ◦ F−1
K , v̂h ∈ Q1(K̂), K ∈ Th

}
,

where FK : K̂ → K is an affine mapping.

Remark 1. For a convex quadrilateral the mapping FK : K̂ → K is an iso-
parametric map, which may not be an affine mapping. The mapping becomes an
affine mapping if K is a parallelogram.


