
INTERNATIONAL JOURNAL OF c⃝ 2017 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 14, Number 6, Pages 916–934

SPARSE AUTOMATIC DIFFERENTIATION FOR COMPLEX

NETWORKS OF DIFFERENTIAL-ALGEBRAIC EQUATIONS

USING ABSTRACT ELEMENTARY ALGEBRA

SLAVEN PELEŠ AND STEFAN KLUS

Abstract. Most numerical solvers and libraries nowadays are implemented to use mathematical
models created with language-specific built-in data types (e.g. real in Fortran or double in C) and
their respective elementary algebra implementations. However, the built-in elementary algebra

typically has limited functionality and often restricts the flexibility of mathematical models and
the analysis types that can be applied to those models. To overcome this limitation, a number
of domain-specific languages such as gPROMS or Modelica with more feature-rich built-in data
types have been proposed. In this paper, we argue that if numerical libraries and solvers are

designed to use abstract elementary algebra rather than the language-specific built-in algebra,
modern mainstream languages can be as effective as any domain-specific language. We illustrate
our ideas using the example of sparse Jacobian matrix computation. We implement an automatic
differentiation method that takes advantage of sparse system structures and is straightforward to

parallelize in a distributed memory setting. Furthermore, we show that the computational cost
scales linearly with the size of the system.

Key words. Sparse automatic differentiation, differential-algebraic equations, abstract elemen-

tary algebra.

1. Introduction

Differential-algebraic equations (DAEs) are ubiquitous in systems engineering
problems, especially in design applications [5, 25, 27, 11, 12]. Mathematical models
in this area are typically heterogeneous and very sparse. Obtaining the sparse Jaco-
bian for such problems is critical for successful solving or preconditioning strategies.

Additional challenges arise from the need to effectively manage the complexity
of system engineering models. The model equations are typically not in a single
central place, but assembled from component model equations loaded from multi-
ple dynamic libraries. Furthermore, the component model structure can (and often
does) change at runtime. For example, when designing a heat exchanger one may
want to keep inlet and outlet temperatures constant at operating conditions and
optimize the heat exchanger geometry parameters. In the transient simulations,
however, the heat exchanger geometry is fixed and temperatures are system vari-
ables. The variable and parameter designation is selected by the designer as needed
at runtime. The ability to reuse the same model for different types of analyses is
required to reduce the cost of the computation deployment as well as the cost of
component model verification and validation.

To address these requirements, domain-specific modeling languages based on
symbolic code manipulations such as gPROMS [17] and Modelica [18] have been
introduced. Tools built around these languages [6, 26, 15, 20, 16] allow engineers
to work in a more interactive design environment where they can make modifica-
tions of their models at runtime. These tools go beyond Jacobian generation and

Received by the editors March 27, 2017.
2010 Mathematics Subject Classification. 68W30, 68U20, 68N19.

916



ABSTRACT ELEMENTARY ALGEBRA 917

perform a number of transformations on the mathematical model, such as causal-
ization, tearing, and index reduction to make subsequent simulations more efficient
(see e.g. [3] and references therein). Under the hood, the model encoded in the
domain-specific language is processed symbolically and code compatible with the
numerical solver is generated and compiled on the fly. Then, such a hard-wired
precompiled model is simulated and the result is returned to the user. This ap-
proach was pioneered in compiler automatic differentiation tools such as ADIC [2]
and OpenAD/F [23].

Symbolic manipulations and compiling automatically generated code on the fly
allow one to reuse models coded in a domain-specific language for different types of
analyses using different numerical solvers. The downside is that the model needs to
be regenerated and recompiled every time the model structure is modified. Scaling
up this approach to more complex problems is another challenge as the symbolic
preprocessing of model equations may become a bottleneck. In such a framework
one needs to support two different parallelization schemes – one for the symbolic
manipulations of the model equations and another one for solving these equations
numerically. Symbolic transformations are generally nontrivial to parallelize. The
more features the domain-specific language offers, the more complex the symbolic
processing algorithms become and so does their parallel implementation. At the
time of this writing, we are not aware of distributed memory parallel schemes for
the symbolic processing of mathematical equations.

Modern object-oriented languages, such as C++, which support operator over-
loading, template specialization, type traits, and other advanced features allow one
to create numerical models that can be reconfigured at runtime. In this paper we
argue that the same functionality provided by symbolic preprocessing of the model
equations can be implemented by creating custom data types and appropriate li-
braries in mainstream object-oriented languages. Recently, solver frameworks that
use abstract data types were proposed [1]. Those frameworks do not require spe-
cific data types to be used, but only specify elementary algebra that the data types
have to support. By designing models and solvers to use abstract data types, one
can reuse the same models and solvers for multiple analysis types such as forward
simulations, optimization, sensitivity analysis, or embedded uncertainty quantifi-
cation [4]. Switching between these may be accomplished simply by changing (or
reconfiguration of) the data type. Furthermore, abstract data types can be used to
compute automatically the system connectivity graph which could then be utilized,
for instance, to partition the system into smaller subsystems, perform index reduc-
tion for differential-algebraic equations, implement tearing algorithms, and many
other calculations.

We illustrate this abstract elementary algebra approach by developing a method
for sparse automatic Jacobian generation, which is superior to other available meth-
ods when applied to systems engineering problems. We show that our method allows
for model reconfiguration at runtime and overall better code reuse in scientific ap-
plications. Moreover, we show that our approach enables the automatic generation
of the dependency graph of a system. The method is straightforward to parallelize
in a distributed memory environment.

A similar approach is used in Sacado [19], an automatic differentiation package
which is part of the Trilinos library [9]. However, Sacado does not support sparse
derivatives – it allocates memory for derivatives with respect to all system variables.
For many partial differential equation (PDE) models this is not a significant limi-
tation since the sparsity pattern typically consists of locally dense cells and dense


