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Abstract. In this paper, we implement and analyse a spectral element method (SEM) on hybrid
triangular and quadrilateral element meshes, where the elemental transformation between the
triangular element and the reference element is based on the mapping in [17]. We introduce the

notion of “quasi-interpolation” to glue the hybrid elements which can build in the singularity of
the elemental mapping, and only affects one coefficient of the tensorial nodal basis expansion.
Therefore, the hybrid method can be implemented as efficiently as the usual quadrilateral SEM.

We also rigorously analyse the “quasi-interpolation” error and the convergence of the hybrid SEM,
which show the spectral accuracy can be kept.
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1. Introduction

The spectral element method, which enjoys both high accuracy of the spec-
tral method and geometric flexibility of the finite element method, has become
a powerful tool, perhaps the method of choice, for challenging simulations with
stringent accuracy and storage requirement (see, e.g., [19, 5, 13, 2]). The quadri-
lateral/hexahedral spectral element method (QSEM) has been studied and docu-
mented well in literature. We particularly highlight that Guo and Jia [12, 8] con-
ducted a very delicate analysis of the quadrilateral SEM, where the error estimates
were featured with the explicit dependence of the geometric parameters of the ele-
ments, and where the so-called “quasi-orthogonal projections” played an important
part in the analysis. The results therein could provide deep insights into how the
quality of the mesh affects the accuracy of spectral element approximations.

It is known that the triangular/tetrahedral spectral element method (TSEM) on
unstructured meshes has more flexibility for complex computational domains and
adaptivity techniques. Considerable efforts have been devoted to these approaches
along the lines: (i) nodal TSEM based on high-order polynomial interpolation on
special interpolation points [3, 11, 26]; (ii) modal TSEM based on the Koornwinder-
Dubiner (KD) polynomials [14, 6, 13, 15, 21]; and (iii) approximation by non-
polynomial functions [23, 16, 4]. It is noteworthy that due to lacking of tensorial
structure, these approaches are much more complicated in implementation than
QSEM.

One of the main purposes of this work is to further the study of Guo and Jia [7, 8]
by considering the scenario when some of the quadrilateral elements deform into
triangular elements. Indeed, using hybrid triangular and quadrilateral elements,
one can handle more complex domains with more regular meshes, e.g., by tiling the
triangular elements along the boundaries of complex obstacles. In practice, one also
wishes the implementation of such a hybridisation can inherit the tensorial structure
of the QSEM. It is noted that the constants in the error estimates depend on the
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lower bound of 1/J (J is the Jacobian of the mapping from a quadrilateral element
to the reference square, see [12, (2.9)]). Thus, the constants in the upper bounds
become infinity when one of the interior angles is close to π, i.e., the quadrilateral
element deforms into a triangular element. This brings about an interesting issue:
How to effectively treat singular deformations in implementation without loss of
accuracy and rigorously analyse the approach?

The tackle of the issue essentially relies on the triangle-rectangle transformation
reported in [17]. The mapping pulls one side (at the middle point) of the triangle to
two sides of the rectangle, and results in desirable distributions of the grids, com-
pared with the Duffy mapping [6]. Samson et al [20] proposed a modal approach
based on the inspection that the product of any continuous function and 1/J is inte-
grable over the reference square, so the singularity of the elemental transformation
can be perfectly removed. However, much care is needed for the implementation.
Indeed, the nodal basis is more preferable in practice.

In this paper, we introduce the so-called “quasi-interpolation” to glue the neigh-
bouring triangles and rectangles in C0-sense. Different from the usual tensorial in-
terpolation, this interpolation builds in the “pole” condition of the singular transfor-
mation. This however only affects one interpolation coefficients which should be pre-
determined by some other coefficients. Therefore, we can incorporate this “known”
equation in the implementation leading to a minimal amendment of usual QSEM
codes. It is noteworthy that this notion is different from the “quasi-orthogonal
projection” [12], which was essentially intended to glue and analyse the modal ap-
proach for QSEM by separating interior, boundary and vertex modes. We also
conduct error analysis of the “quasi-interpolation” and hybrid SEM, and derive the
estimates following the spirit of Guo and Jia [12] in terms of showing the explicit
dependence of some important parameters.

The rest of the paper is organised as follows. In Section 2, we start with the
elemental transformations between quadrilaterals, and the triangle-rectangle map-
ping. More importantly, we study the situation when one quadrilateral element
gradually deforms into a triangular element, and examine how the accuracy is de-
teriorated and conditioning of the system unpleasantly grows. In Section 3, we
introduce the “quasi-interpolation” and derive its interpolation error estimate. In
Section 4, we implement the hybrid SEM for elliptic and Stokes problems, conduct
some related analysis, and provide various numerical results to show the accuracy.

2. Preliminaries

In this section, we first present the transformation F� , which transforms the
reference square to a convex quadrilateral. Then we test the changes in effect
of applying the standard QSEM to elliptic problems when a convex quadrilateral
deforms to a triangle gradually. At last, we present the limited transformation F△,
which transforms the reference square to a triangle, and find out what makes the
standard QSEM out of operation when handling the triangular element.

2.1. Elemental transformation between quadrilaterals. Let (ξ, η) be the
coordinate system related to the reference square � := Λξ × Λη = (−1, 1)2 = Λ2.

Denote by Q a generic convex quadrilateral with vertices
{
Qj : (xj , yj)

}4

j=1
in

(x, y)-coordinates. For clarity of presentation, we use boldface letters to denote
vectors or vector-valued functions throughout this paper, e.g.,

(1) x = (x, y), xj = (xj , yj), aj = (aj , bj), 1 ≤ j ≤ 4.


