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UNIFORM Lp-BOUND OF THE ALLEN–CAHN EQUATION AND

ITS NUMERICAL DISCRETIZATION

JIANG YANG, QIANG DU, AND WEI ZHANG∗

Abstract. We study uniform bounds associated with the Allen–Cahn equation and its numerical
discretization schemes. These uniform bounds are different from, and weaker than, the conven-
tional energy dissipation and the maximum principle, but they can be helpful in the analysis of
numerical methods. In particular, we show that finite difference spatial discretization, like the
original continuum model, shares the uniform Lp-bound for all even p, which also leads to the
maximum principle. In comparison, a couple of other spatial discretization schemes, namely the
Fourier spectral Galerkin method and spectral collocation method preserve the Lp-bound only
for p = 2. Moreover, fully discretized schemes based on the Fourier collocation method for spa-
tial discretization and Strang splitting method for time discretization also preserve the uniform
L2-bound unconditionally.
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1. Introduction

We consider the standard Allen–Cahn (AC) equation in this paper, which is
given as follows

∂u

∂t
= ǫ2∆u − f(u), x ∈ Ω, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ Ω̄,
(1)

where u = u(x, t) is a real-valued scalar function, the nonlinear term is given by
f(u) = u3−u, the parameter ǫ > 0 characterizes the width of diffuse interface, and
Ω is a bounded domain in Rd. We restrict our attention to the periodic boundary
condition with Ω being the unit cell. The Allen–Cahn equation can be viewed as
an L2-gradient flow of the following Ginzburg-Landau free energy functional

(2) E(u) =

∫

Ω

(

1

2
ǫ2|∇u|2 + F (u)

)

dx,

where F (u) is taken as the typical double well potential F (u) = 1
4 (u

2 − 1)2 so that
f(u) = F ′(u). We also assume that the initial data u0 = u0(x) takes value between
the energy wells, i.e., bounded by the constant 1.

The Allen–Cahn equation has been introduced by Allen and Cahn in [1] to
describe the motion of anti-phase boundaries in crystalline solids. The equation also
bears other names, for example, the Ginzburg-Landau equation where the unknown
solution may be real, complex, or vector-valued [8, 21]. It is now a basic model
equation for the diffuse interface (phase field) approach developed to study phase
transitions and interfacial dynamics in materials science as well as various problems
in many other applications [4, 7]. There have also been extensive numerical studies
of phase field and diffuse interface models, see, e.g. [6, 16, 20].
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One of the important issues concerning numerical solution of differential equa-
tions is the stability of numerical schemes. For nonlinear models, a priori bounds
on the discrete solutions are often important to the numerical stability. Given AC
being a typical gradient flow, we have

d

dt
E = −‖ut‖

2
2 ≤ 0 and E(t) ≤ E(0),

which represents the energy bound of the original continuum model. The preserva-
tion of such nonlinear energy bounds by numerical approximations often dominates
the discussions in numerical analysis, In [11], Eyre proposed an unconditionally
stable energy convex splitting scheme for general gradient flows, but it is only first
order. Some recent stability analysis can be found in[12, 13, 14, 24, 28, 29], where
most authors again focused on the energy dissipation.

Another intrinsic bound for the Allen–Cahn equation is the point-wise bound in
the form of a maximum principle, see, e.g., [10]. Specifically, if the initial data u0(x)
takes value between the energy wells, i.e., bounded by the constant 1, then the time-
dependent solution of the Allen–Cahn equation is also bounded by constant 1. Such
a property can be preserved numerically on the discrete level, see for example [5, 27]
for discussions on fully discrete finite volume and finite difference approximations.
The discrete maximum principle was further extended to generalized Allen–Cahn
equations and fractional Allen–Cahn equations [18, 23]. In these works, the space
Laplace operator is discretized by central finite difference. Similar results have
been established for finite volume schemes as well as finite element methods with
mass lumping based on Voronoi-Delaunay meshes, see [6] and the references cited
therein. However, it is known that the maximum principle can not be preserved in
general by spectral methods, since the spectral projection itself may fail to retain
point-wise bounds. Hence, we do not expect that spectral methods preserve the
maximum principle for nonlinear Allen–Cahn equations.

In this paper, we present some bounds on solutions other than the energy bound
and maximum principle for the Allen–Cahn equation and its numerical discretiza-
tion. Specifically, we consider weaker Lp-bounds. First, we define the Lp-average
norm |||·|||p of u in the fixed domain Ω for any p > 0,

(3) |||u|||p =
1

SΩ
‖u‖pLp(Ω) =

1

SΩ

∫

Ω

|u|pdx,

where SΩ is the volume of the domain Ω. Given the assumed bounds on the initial
data, by applying the maximum principle directly, we can obtain

(4) |||u|||p(t) =
1

SΩ

∫

Ω

|u(x, t)|pdx ≤
1

SΩ

∫

Ω

1dx = 1,

which is uniform not only in space and time, but also with respect to the domain
Ω, the diffuse interface width ǫ and the exponent p. This uniform Lp-bound is,
of course, weaker than the maximum principle. On the other hand, the uniform
Lp-bound implies the maximum principle if it holds for a sequence of p that goes
to infinity. The larger p one can pick, the closer Lp-bound is to the maximum
principle.

Computationally, we are often interested in constructing discrete numerical schemes
that preserve the properties of the continuum equations as much as possible. How-
ever, this is not always possible for complex systems. Hence, it is interesting to
know to what extent, weaker results can be established which may still allow the
numerical schemes to provide reliable computational predictions. For example, it is
obvious that there could be more flexibility designing numerical schemes to preserve


