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SYMMETRIC HIGH ORDER GAUTSCHI-TYPE EXPONENTIAL
WAVE INTEGRATORS PSEUDOSPECTRAL METHOD FOR THE
NONLINEAR KLEIN-GORDON EQUATION IN THE
NONRELATIVISTIC LIMIT REGIME

YAN WANG AND XIAOFEI ZHAO

Abstract. A group of high order Gautschi-type exponential wave integrators (EWIs) Fourier
pseudospectral method are proposed and analyzed for solving the nonlinear Klein-Gordon equation
(KGE) in the nonrelativistic limit regime, where a parameter 0 < ¢ < 1 which is inversely
proportional to the speed of light, makes the solution propagate waves with wavelength 0(52)
in time and O(1) in space. With the Fourier pseudospectral method to discretize the KGE in
space, we propose a group of EWIs with designed Gautschi’s type quadratures for the temporal
integrations, which can offer any intended even order of accuracy provided that the solution is
smooth enough, while all the current existing EWIs offer at most second order accuracy. The
scheme is explicit, time symmetric and rigorous error estimates show the meshing strategy of
the proposed method is time step 7 = O(¢2) and mesh size h = O(1) as 0 < & < 1, which is
‘optimal’ among all classical numerical methods towards solving the KGE directly in the limit
regime, and which also distinguish our methods from other high order approaches such as Runge-
Kutta methods which require 7 = O(¢®). Numerical experiments with comparisons are done to
confirm the error bound and show the superiority of the proposed methods over existing classical
numerical methods.
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1. Introduction

The Klein-Gordon equation (KGE) is known as the relativistic version of the
Schrodinger equation for describing the dynamics of spinless particles [35]. Under
proper nondimensionalization, the dimensionless nonlinear KGE in d dimensions
(d=1,2,3) reads [3 30, BT, 29, (16, 19, 20, 33]:

£20uu — Au + E%u—i—f(u) =0, xeR% t>0,

(1)
1

u(x,0) = ¢1(x), Oru(x,0)= ;gbg(x), x € RY,

Here t is time, x is the spatial coordinate, u := u(x,t) is a real-valued scalar field,
0 < e <1 is a dimensionless parameter which is inversely proportional to the speed
of light, ¢ and ¢o are two given real-valued initial data which are independent of
g, and f(u) : R = R is a given nonlinearity independent of €. It is clear that the
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KGE (@) is time symmetric and conserves the energy [3| [19] 20] 29]
(2)
1
E(t) := / [52|8tu(x, 2 + | Vau(x, t) > + €—2|u(x7 )2 + F(u(x, t))] dx
Rd

-/ Lig|¢2<x>|2 FIVAP + o0 + F(qﬁl(x))} dx = B(0), ¢ >0,

with F(u) =2 [ f(p)dp.

For fixed 0 < ¢ < 1, i.e. the relativistic regime, the KGE () has been well-
studied both theoretically and numerically. We refer the readers to [3] for a detailed
review on the well-posedness and existing numerical methods for the KGE in this
regime. As ¢ — 0, which corresponds to the speed of light goes to infinite and is
known as the nonrelativistic limit in physics, recent analytical results [30 BT [29]
show that the problem (1) propagates waves with amplitude at O(1), and wave-
length at O(e?) and O(1) in time and space, respectively. The small wavelength
makes the solution of the KGE highly oscillatory in time as 0 < ¢ < 1. Figure
[[ shows an example of the profile of the solution under different . The high os-
cillations cause severe numerical burdens in practical computations of the KGE in
the nonrelativistic limit regime. For example, in order to capture the solution cor-
rectly in the highly oscillatory regime, frequently used finite difference time domain
(FDTD) methods, such as the energy conservative type, semi-implicit type and
fully explicit type [13, B3], need the meshing strategy requirement (or e-scalability)
h = O(1) but 7 = O(®) [3], where h andr denote the spatial mesh size and the
time step, respectively. To release the temporal meshing strategy, based on the
classical exponential wave integrators (EWIs) established in [23] 26, 27, [32] [17]
for solving the oscillatory ODEs arising mainly from molecular dynamics, an EWI
with the Gautschi-type quadrature [I7] spectral method was proposed for solving
the nonlinear KGE in the nonrelativistic limit regime and was shown to improve the
e-scalability to 7 = O(¢?) in [3]. This method also finds successful applications in
solving the Klein-Gordon-Zakharov (KGZ) system in a similar oscillatory situation
[5]. Later on, an EWI with the Deuflhard-type quadrature [I4] spectral method,
which is equivalent to the time-splitting spectral method, was considered in [12]
for the KGE in the nonrelativistic limit regime. It can offer a smaller temporal
error bounded but the same e-scalability. Recent studies turn to utilize multi-
scale analysis to first derive some sophisticate reformulations or decompositions of
the KGE, then based on which one can propose some suitable numerical meth-
ods [16, [10} [6] 4] for asymptotic preserving or uniformly accurate property. These
multiscale numerical methods are extremely powerful in computations of KGE in
the oscillatory regime, however they either require some delicate pre-knowledge of
the oscillation structures of the problem [6 [I6] [4] or require introducing an extra
degree-of-freedom [10]. Very recently, an iterative exponential integrator with op-
timally uniform accuracy has been proposed in [9]. In view of that the solution to
(@) has oscillation wavelength at O(g?) in time, the EWIs could be viewed as the
optimal one among all the traditional methods towards integrating the KGE ()
directly in the nonrelativistic limit regime.

However, all the existing EWIs for either solving the oscillatory ODEs from
molecular dynamics or solving the KGE offer at most second order accuracy in
temporal discretization. Of course, one can apply the Runge-Kutta methods, like
the one proposed in [15] for the approximations in time to get higher order temporal



