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REGULARIZATION AND ROTHE DISCRETIZATION OF

SEMI-EXPLICIT OPERATOR DAES

ROBERT ALTMANN AND JAN HEILAND

Abstract. A general framework for the regularization of constrained PDEs, also called oper-
ator differential-algebraic equations (operator DAEs), is presented. The given procedure works
for semi-explicit and semi-linear operator DAEs of first order including the Navier-Stokes and

other flow equations. The proposed reformulation is consistent, i.e., the solution of the PDE re-
mains untouched. Its main advantage is that it regularizes the operator DAE in the sense that
a semi-discretization in space leads to a DAE of lower index. Furthermore, a stability analysis
is presented for the linear case, which shows that the regularization provides benefits also for
the application of the Rothe method. For this, the influence of perturbations is analyzed for the
different formulations. The results are verified by means of a numerical example with an adaptive
space discretization.
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1. Introduction

Constrained PDEs arise naturally in the modelling of physical, chemical, and
many other real-world phenomena. They occur whenever different PDE models are
coupled, e.g., via mutual variables at the interfaces, since the coupling is typically
modelled via algebraic constraints. Such models are widely used in flexible multi-
body dynamics, e.g., the pantograph and catenary benchmark problem [6] or the
flexible slider crank mechanism [30, 31]. Also flow equations such as the Navier-
Stokes equations [33, 35] can be seen as constrained PDEs due to the coupling of
momentum equation to the divergence-free constraint. Further applications can be
found in circuit simulation [34], electromagnetics, and chemical engineering [9].

We consider these equation systems of ordinary or partial differential equations
(ODEs, PDEs) and algebraic equations in line with other constrained PDEs –
often referred to as PDAEs – as differential-algebraic equations (DAEs) in function
spaces, so-called abstract or operator DAEs.

Despite the large range of applications and the advantages from the modeling
perspective, the mathematical analysis of operator DAEs is full of open research
questions. There is still no common classification like the index concepts for DAEs
[21, Ch. 12]. The generalization of the tractability index as proposed, e.g., in [34]
does not apply for the commonly used formulation by means of Gelfand triples. The
very general concept of the perturbation index, as it was defined in [25] for linear
PDAEs, applies under strong regularity conditions but is still ambiguous in the
choice of the norm in which one measures the perturbation and their derivatives.
Also the differentiation index was generalized to PDAEs [22] but has difficulties
with the agreement of the PDAE index with the index of the semi-discretized DAE.
Yet another idea is to classify the index of a PDAE directly by the index that may
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be determined after a spatial discretization. This, however, leads to the similar
unclear problem, what a good discretization of a PDAE is.

Within this paper, we analyse constrained systems of first order and semi-explicit
structure. Particularly, we consider systems of the form

u̇(t) +Ku(t) + B∗λ(t) = F(t),(1a)

Bu(t) = G(t).(1b)

Therein, λ denotes the Lagrange multiplier, which enforces the linear constraint
Bu = G. In view of numerical simulations, the incorporation of the constraints via
a Lagrange multiplier and a suitable reformulation seem promising and follow the
paradigm in the treatment of DAEs, that it is preferable to collect all available
information in the form of constraints instead of eliminating them. For the Navier-
Stokes equations this means to maintain the pressure as part of the system.

In this paper, we introduce a regularization or index reduction method for the
PDAE (1) without introducing an index as such. We rather refer to the well-
defined index of the semi-discrete system after a spatial discretization by mixed
finite elements. In other words, we propose a reformulation of the given PDAE
system such that a semi-discretization leads to a DAE of lower index.

A transformation on operator level can be the base for numerically advanta-
geous discretization schemes. The commonly taken approach of first discretizing
and then transforming the equations comes with the latent risk that the algebraic
manipulation are not valid in infinite dimensions [17]. This may cause instabilities
or inconsistencies as the discretization becomes more accurate. The taken approach
has been introduced for second-order systems appearing in elastodynamics [2] and
for flow equations [4] before. Here, we consider the more general case with time-
dependent constraints and provide the functional analytical framework.

The main contribution of this paper is then the analysis of the Rothe discretiza-
tion through the application of the implicit Euler scheme to the operator DAE (1).
As for the finite-dimensional case, we expect a different behavior of the variables u
and λ. It will turn out that we need stronger regularity assumptions to prove the
convergence of the Lagrange multiplier. Among others, we consider the influence
of perturbations and quantify them in a general convergence result. We show that
the proposed reformulation improves the robustness against such perturbations, as
we confirm numerically for a simulation setup with adaptive, and thus changing,
meshes.

The paper is organized as follows. In Section 2 we provide the theoretical frame-
work for the formulation of operator differential equations. These tools are then
used for the formulation and regularization of the operator DAEs in Section 3 in
which we also analyse the influence of perturbations. The advantages of the ob-
tained formulation is topic of Section 4. We consider the discretization in time,
which corresponds to the Rothe method for time-dependent PDEs in Section 5.
Further, we prove the convergence of the implicit Euler scheme and discuss the
resulting advantages in terms of perturbations. Finally, we illustrate the obtained
theoretical results in a numerical simulation of the Navier-Stokes equations in Sec-
tion 6 and conclude the paper in Section 7.


