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WEAK SOLUTIONS CONSTRUCTED BY
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Abstract. We consider the initial boundary value problem for the three dimensional Navier-
Stokes equations with Navier-type slip boundary conditions. After having properly formulated
the problem, we prove that weak solutions constructed by approximating the time-derivative by
backward finite differences (with Euler schemes) are suitable. The main novelty is the proof
of the local energy inequality in the case of a weak solution constructed by time discretization.
Moreover, the problem is analyzed with boundary conditions which are of particular interest in
view of applications to turbulent flows.
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1. Introduction

In this paper we consider the three dimensional Navier-Stokes equations, with
unit viscosity and zero external force (assumptions which are nevertheless unessen-
tial) in a bounded domain Ω ⊂ R

3, with a smooth boundary Γ = ∂Ω and under
“curl based” Navier-type slip boundary conditions. Namely we consider the follow-
ing initial boundary value problem

(1)































∂tv −∆v + (v · ∇) v +∇q = 0 (t, x) ∈]0, T [×Ω,

∇ · v = 0 (t, x) ∈]0, T [×Ω,

v · n = 0 (t, x) ∈]0, T [×Γ,

ω × n = 0 (t, x) ∈]0, T [×Γ,

v(0, x) = v0(x) x ∈ Ω,

where v : [0, T ]×Ω → R
3 is the unknown velocity, ω := curl v the vorticity field, and

q : [0, T ] → R the kinematic pressure. The role of the above boundary conditions
in the mathematical theory of Euler and Navier-Stokes equations is emphasized in
Xiao and Xin [35] and Beirão da Veiga and Crispo [6]. Interesting applications
of the above conditions to turbulence modeling, especially for the description of
unsteady phenomena, can be found in Layton [26], and the review paper [7] (see
also Ref. [10] for a two-dimensional related problem linked with the detection of
time-transient phenomena).

In this paper we continue and extend previous work from [13] (done in the space-
periodic setting, as well as the forthcoming [9] concerning the space-time discrete
problem) and we observe that the analysis of the time-discretization, is a topic
which did not attract a lot of attention, in the context of construction of solutions
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satisfying the local energy inequality. Starting from the celebrated papers by Schef-
fer [30] and Caffarelli, Kohn, and Nirenberg [16] concerning the partial regularity
for the Navier-Stokes equations, the notion of suitable weak solution became a con-
cept of paramount importance in the mathematical theory of the Navier-Stokes
equations. We recall that Leray-Hopf weak solutions satisfy a “global energy in-
equality,” while the results of partial regularity require (beside technical conditions
on the pressure) the so-called “local energy inequality”, see (4) and the next sec-
tion for precise definitions. In [16] authors introduced an approximation scheme
with time-retarded mollifiers, in order to prove the local energy inequality and to
estimate the pressure in appropriate Lebesgue spaces. The role of the regularity
of the pressure has been later considered in Lin [27] and Vasseur [34]. Combined
with the lack of uniqueness of weak solutions, the notion of local energy inequal-
ity raised the question to determine which solutions are suitable, see Beirão da
Veiga [2, 3, 4] (on the other hand local-in-time strong solutions clearly satisfy the
local energy inequality). Especially the question whether or not solutions obtained
by the Faedo-Galerkin method satisfy the local energy inequality turned out to
be a particular difficult problem. This has been left open for twenty years and
a first partial solution to this problem came with the two companion papers by
Guermond [22, 23]. In the above references it has been proved that if projectors
over the finite element spaces used to discretize (with respect to the space vari-
ables x) velocity and pressure satisfy certain commutation properties, then weak
solutions constructed in the limit of vanishing mesh-size are suitable. In particular,
these results cover the MINI element and the Taylor-Hood one. I wrote that this
result is partial since –at present– the case of the Fourier-Galerkin method in the
space periodic setting is still open, see also Biryuk, Craig, and Ibrahim [15]. The
question is also of relevance for applications, because the notion of suitable should
be satisfied by any reasonable solution (called “physically relevant”) obtained with
approximation by Large Eddy Simulation methods, see Guermond et al. [24, 25].
Other recent related results can be found in [13, 14, 19].

In this paper, we continue in the spirit of connecting results from mathematical
analysis with those from numerical analysis, and we focus on understanding when
discrete-time approximations produce suitable solutions, as the time-step-size κ > 0
goes to zero. We treat the boundary value problem with certain slip conditions,
while the Dirichlet problem seems to require a completely different and much more
technical treatment, which is object of a still ongoing research. Note added in
proof: After the paper being accepted we have been aware that in Sec. 5 of Ref [21]
the time-discrete problem in the implicit case is studied in the Dirichlet case, by
using techniques of semigroup theory.

In particular, we analyze the following single step scheme:

Algorithm. (Euler implicit) Let be given a time-step-size κ > 0 and the cor-
responding net IM = {tm}Mm=0, with M = [T/κ] ∈ N and tm := mκ. Then, for
m ≥ 1 and for vm−1 given from the previous step with v0 = v0, compute the iterate
vm as follows: Solve

(2)



















dtv
m −∆vm + (vm · ∇) vm +∇qm = 0 in Ω,

∇ · vm = 0 in Ω,

vm · n = 0 on Γ,

curl vm = 0 on Γ,

where dtv
m := vm−vm−1

κ denotes the backward finite difference.


