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Abstract. This paper presents two algorithms for calculating an ensemble of solutions to laminar

natural convection problems. The ensemble average is the most likely temperature distribution
and its variance gives an estimate of prediction reliability. Solutions are calculated by solving

two coupled linear systems, each involving a shared coefficient matrix, for multiple right-hand

sides at each timestep. Storage requirements and computational costs to solve the system are
thereby reduced. Stability and convergence of the method are proven under a timestep condition

involving fluctuations. A series of numerical tests, including predictability horizons, are provided

which confirm the theoretical analyses and illustrate uses of ensemble simulations.
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1. Introduction

Ensemble calculations are essential in predictions of the most likely outcome
of systems with uncertain data, e.g., weather forecasting [13], ocean modeling [15],
turbulence [12], etc. Ensemble simulations classically involve J sequential, fine mesh
runs or J parallel, coarse mesh runs of a given code. This leads to a competition
between ensemble size and mesh density. We develop linearly implicit timestepping
methods with shared coefficient matrices to address this issue. For such methods,
it is more efficient in both storage and solution time to solve J linear systems with
a shared coefficient matrix than with J different matrices.

Prediction of thermal profiles is essential in many applications [1, 8, 17, 18].
Herein, we extend [6] from isothermal flows to temperature dependent natural con-
vection. We consider two natural convection problems enclosed in mediums with:
non-zero wall thickness [3] and zero wall thickness; Figure 1 illustrates a
typical setup. The latter problem is often utilized as a thin wall approximation.

Consider the Thick wall problem. Let Ωf ⊂ Ω be polyhedral domains in
Rd(d = 2, 3) with boundaries ∂Ωf and ∂Ω, respectively, such that dist(∂Ωf ,∂Ω)
> 0. The boundary ∂Ω is partitioned such that ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 =
∅ and |Γ1| > 0. Given u(x, 0;ωj) = u0(x;ωj) and T (x, 0;ωj) = T 0(x;ωj) for
j = 1, 2, ..., J , let u(x, t;ωj) : Ω × (0, t∗] → Rd, p(x, t;ωj) : Ω × (0, t∗] → R, and
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T (x, t;ωj) : Ω× (0, t∗]→ R satisfy

ut + u · ∇u− Pr∆u+∇p = PrRaγT + f in Ωf ,(1)

∇ · u = 0 in Ωf ,(2)

Tt + u · ∇T −∇ · (κ∇T ) = g in Ω,(3)

u = 0 on ∂Ωf , u = 0 in Ω− Ωf , T = 0 on Γ1 and n · ∇T = 0 on Γ2.(4)

Here n denotes the usual outward normal, γ denotes the unit vector in the direction
of gravity, Pr is the Prandtl number, Ra is the Rayleigh number, and κ = κf in
Ωf and κ = κs in Ω−Ωf is the thermal conductivity of the fluid or solid medium.
Further, f and g are the body force and heat source, respectively.

Let < u >n:= 1
J

∑J
j=1 u

n and u′
n

= un− < u >n. To present the idea, sup-
press the spatial discretization for the moment. We apply an implicit-explicit time-
discretization to the system (1) - (4), while keeping the coefficient matrix indepen-
dent of the ensemble members. This leads to the following timestepping method:

un+1 − un

∆t
+ < u >n ·∇un+1 + u′

n · ∇un

−Pr4un+1 +∇pn+1 = PrRaγTn+1 + fn+1,(5)

∇ · un+1 = 0,(6)

Tn+1 − Tn

∆t
+ < u >n ·∇Tn+1 + u′

n · ∇Tn − κ∆Tn+1 = gn+1.(7)

Consider the Thin wall problem. The main difference is a “u1” term on the r.h.s
of the temperature equation (10) absent in (3). This apparently small difference
in the model produces a significant difference in the stability of the approximate
solution. In particular, a discrete Gronwall inequality is used which allows for the
loss of long-time stability; see Section 4 below. Consider:

ut + u · ∇u− Pr∆u+∇p = PrRaγT + f in Ω,(8)

∇ · u = 0 in Ω,(9)

Tt + u · ∇T −∇ · (κ∇T ) = u1 + g in Ω,(10)

u = 0 on ∂Ω, T = 0 on Γ1, n · ∇T = 0 on Γ2,(11)

where u1 is the first component of the velocity. If we again momentarily disregard
the spatial discretization, our timestepping method can be written as:

un+1 − un

∆t
+ < u >n ·∇un+1 + u′

n · ∇un − Pr4un+1 +∇pn+1 = PrRaγTn + fn+1,

(12)

∇ · un+1 = 0,(13)

Tn+1 − Tn

∆t
+ < u >n ·∇Tn+1 + u′

n · ∇Tn − κ∆Tn+1 = un1 + gn+1.(14)

By lagging both u′ and the coupling terms in the method, the fluid and thermal
problems uncouple and each sub-problem has a shared coefficient matrix for all
ensemble members.
Remark: The formulation (12) - (14) arises, e.g., in the study of natural convection
within a unit square or cubic enclosure with a pair of differentially heated vertical
walls. In particular, the temperature distribution is decomposed into θ(x, t) =


