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Abstract. We construct a pair of conforming and inf–sup stable finite element spaces for the two–

dimensional Stokes problem yielding divergence–free approximations on general convex quadrilat-
eral partitions. The velocity and pressure spaces consist of piecewise quadratic and piecewise con-

stant polynomials, respectively. We show that the discrete velocity and a locally post–processed

pressure solution are second–order convergent.
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1. Introduction

In this paper we construct a low–order, conforming, inf–sup stable, and divergence–
free yielding finite element method for the Stokes problem on quadrilateral parti-
tions of Ω ⊂ R2. Schemes satisfying these criteria, in particular the divergence–free
one, have several desirable properties, for example, a decoupling of the velocity and
pressure errors (cf. (22a)), the exact enforcement of several conservation laws [14],
and improved long–time stability and accuracy of time–stepping schemes [4].

In more detail we propose a finite element pair Vh × Wh consisting of piece-
wise polynomials with respect to a quadrilateral partition satisfying the inf–sup
condition:

sup
v∈Vh\{0}

∫
Ω

(div v)q dx

‖∇v‖L2(Ω)
≥ β‖q‖L2(Ω) ∀q ∈Wh,(1)

as well as the divergence–free property:∫
Ω

(div v)q dx = 0 ∀q ∈Wh ⇐⇒ div v ≡ 0 in L2(Ω).(2)

We note that these two properties are antithetical to each other in the sense that (2)
is equivalent to the inclusion divVh ⊆Wh, whereas (1) requires Wh ⊆ PW (divVh),
where PW denotes the L2–projection onto Wh.

The construction of our finite element pairs is motivated by a smooth de Rham
complex (or Stokes complex [15]) given by the sequence of mappings

(3) 0
⊂−→ H2

0 (Ω)
curl−→H1

0 (Ω)
div−→ L2

0(Ω) −→ 0,

where curl = (∂/∂x2,−∂/∂x1)T . If the domain is simply connected, then this com-
plex is exact, i.e., the range of each map is the kernel of the succeeding map. The
exactness property implies that the divergence operator is surjective from H1

0 (Ω)
onto L2

0(Ω), and in addition, implies the existence of a stream function for incom-
pressible flows. To ensure the stability of our finite element method and to construct
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divergence-free approximations, we build an exact subsequence of (3):

0
⊂−→ Σh

curl−→ Vh
div−→Wh −→ 0,(4)

where Σh ⊂ H2
0 (Ω), Vh ⊂ H1

0 (Ω) and Wh ⊂ L2
0(Ω) are finite dimensional spaces

consisting of piecewise polynomials. Note that the implied inclusion divVh ⊆Wh in
(4) yields pointwise divergence–free approximations. In addition, if the subcomplex
(4) is exact, then the mapping div : Vh →Wh is surjective, and thus divVh = Wh.
Along with a uniform bound of the right-inverse, this result implies the inf-sup con-
dition (1). A key feature of this methodology is that the complex provides a guiding
tool to develop a pair Vh ×Wh satisfying inf–sup stability and the divergence–free
criterion. In particular, the H2–conforming relative Σh dictates both the local and
global properties of these spaces. As far as we are aware, all divergence-free yielding
Stokes pairs follow this program, i.e., all finite element pairs Vh ×Wh satisfying
divVh = Wh have an H2–conforming relative satisfying the exact sequence (4) (see,
e.g., [3, 22, 15, 6, 17, 14, 20]).

A disadvantage of divergence–free yielding and conforming finite element pairs
is that they tend to be high–order or require certain meshes to ensure stability
and conformity. For example, on general triangular partitions, and for piecewise
polynomial spaces, the minimal polynomial degree for the velocity space is four [22,
15]. For tensor product meshes, the smallest local velocity space in two dimensions
is Q3,2 × Q2,3 [3, 6, 14, 20, 25], and the construction of these elements does not
extend to general convex quadrilaterals defined by bilinear mappings. On the other
hand, a nonconforming finite element method that imposes the divergence–free
constraint pointwise on each quadrilateral element has recently been done in [26].
The method given there is low–order and is applicable to convex quadrilaterals.
However, due to the nonconformity, the error estimates of this method are still
coupled with a negative scaling of the viscosity.

We address some of these shortcomings by introducing a conforming finite ele-
ment pair that yields divergence–free approximations, and in addition, is relatively
low–order and stable on general shape–regular quadrilateral partitions. In our ap-
proach we take the H2 finite element relative Σh in (4) to be the de Verbeke–Sanders
macro element, a globally C1 piecewise cubic spline [11, 10, 18, 21]. Via the sub-
complex (4) we are then led to a piecewise quadratic (macro) velocity space and
a piecewise constant pressure space. The global dimension of the spaces is com-
parable to the lowest–order Taylor–Hood pair [23], and furthermore, because the
velocity error is decoupled from the pressure, the method still enjoys second–order
accuracy. We also show that a locally computed post-processed pressure solution
has second order accuracy. We mention that the use of macro elements on simplicial
partitions has recently been done in [1, 7]. The work presented here complements
and extends these results to quadrilateral meshes.

The rest of the paper is organized as follows. In Section 2 we set the notation
and give some preliminary results. We define the finite element spaces and provide
a unisolvent set of degrees of freedom in Section 3. In Section 4 we prove that the
Stokes pair is inf–sup stable, and carry out a convergence analysis for the discrete
problem. In addition we propose a local post–processed pressure solution that is
second–order accurate.


