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A NEW COLLOCATION METHOD FOR SOLVING CERTAIN

HADAMARD FINITE-PART INTEGRAL EQUATION

HUI FENG, YAN GAO, LILI JU, AND XIAOPING ZHANG

Abstract. In this paper, we study a new nodal-type trapezoidal rule for approximating Hadamard
finite-part integrals, and its application to numerical solution of certain finite-part integral equa-
tion. We start with a nodal-type trapezoidal rule discussed in [21], and then establish its error

expansion analysis, from which a new nodal-type trapezoidal rule with higher order accuracy is
proposed and corresponding error analysis is also obtained. Based on the proposed rule, a new
collocation scheme is then constructed to solve certain finite-part integral equation, with the op-
timal error estimate being rigorously derived. Some numerical experiments are also performed to

verify the theoretical results.
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1. Introduction

We consider the following finite-part integral

(1) Lu(x) :=
∫ b

a

=
u(y)

|y − x|1+2s
dy, x ∈ (a, b),

where s ∈ (0, 1) is the singularity index. The integral (1) is divergent in the classic
Riemann sense, and should be understood in the Hadamard finite-part sense. There
are several equivalent definitions for this finite-part integral in the literatures [15],
and we here adopt the following definition:

(2) Lu(x) = lim
ϵ→0

(∫
Ωϵ(x)

u(y)

|y − x|1+2s
dy − ϵ−2su(x)

s

)
, x ∈ (a, b),

where x is the singular point and Ωϵ(x) = (a, b)\(x − ϵ, x + ϵ). A function u(y)
is said to be finite-part integrable with respect to the weight |y − x|−1−2s if the
limit on the right-hand side of (2) exists. Assuming u is absolutely integrable on
(a, b),then a sufficient condition for u(x) to be finite-part integrable is that u(x)
is α-Hölder continuous for some α ∈ (2s, 1) on (a, b) if s ∈ (0, 1/2), and u′(x) is
α-Hölder continuous for some α ∈ (2s− 1, 1) on (a, b) if s ∈ [1/2, 1).

Integrals of this kind appear in many practical problems related to aerodynamics,
wave propagation or fluid mechanics, mostly with relation to boundary element
methods and finite-part integral equations. Numerous work has been devoted in
developing the efficient numerical evaluation method, such as Gaussian (GS) rule
[6, 7], Newton-Cotes (NC) rule [9, 12, 14, 17, 20, 21], and some other rules [2, 3,
5]. Amongst them, NC rule is a popular one due to its ease of implementation
and flexibility of mesh. NC rule is constructed by replacing u by its Lagrange
interpolation in (1), and can be classified into two types: grid-type and nodal-
type. The way of distinguishing one type from another is the choice of the singular
point’s location. Grid-type takes the singular point being located in the interior of
a certain grid and nodal-type forces the singular point to be a certain nodal one.
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There are some other differences between these two type of rules. Amongst those,
a major one is that the two rules are based on different definitions of the finite-part
integrals (1) respectively. Since Lagrange interpolation is smooth in the interior
of every grid, we can use the definition (2) directly to design grid-type NC rules.
However, Lagrange interpolation is only continuous at the nodal points and the
definition (2) is invalid to produce nodal-type NC rules, especially for s ≥ 1/2, due
to the rigorous regularity requirement on u for the definition (2). To overcome such
problem, one often should adopt the following definitions [15]:

L−u(x) = lim
ϵ→0

(∫ x−ϵ

a

u(y)

(x− y)1+2s
dy + r−(x)

)
,

L+u(x) = lim
ϵ→0

(∫ b

x+ϵ

u(y)

(y − x)1+2s
dy + r+(x)

)
,(3)

where

r−(x) =


ϵ−2s

−2s u(x
−), s < 1/2,

−ϵ−1u(x−)− ln ϵu′(x−), s = 1/2,

ϵ−2s

−2s u(x
−)− ϵ1−2s

1−2s u
′(x−), s > 1/2,

r+(x) =


ϵ−2s

−2s u(x
+), s < 1/2,

−ϵ−1u(x+) + ln ϵu′(x+), s = 1/2,

ϵ−2s

−2s u(x
+) + ϵ1−2s

1−2s u
′(x+), s > 1/2,

and u(x−) and u(x+) denote the left and right limits of u at x respectively. Obvi-
ously, if u is smooth enough, then Lu(x) = L−u(x) + L+u(x).

It’s well-known that the accuracy of NC rule with kth order piecewise polynomial
interpolant for the usual Riemann integrals is O(hk+1) for odd k and O(hk+2) for
even k. However, the rule is less accurate for finite-part integral (1) due to the
hyper-singularity of the kernel. For example, general error analysis shows that the
accuracy of both types of rules are O(hk+1−2s) [4, 8, 9, 12, 14, 18]. A way of
obtaining higher order accuracy for grid-type rule is to study its superconvergence
property. This property implies that one can get higher order accuracy on the
condition that the singular point coincides with some a priori known point. A series
of outstanding works have been devoted to this field [11, 13, 16, 17, 18, 22, 23].

One goal of this paper is to study a higher order nodal-type rule for evaluation
of (1). We start with a nodal-type trapezoidal rule (k = 1) investigated in [21].
Instead of estimating the error directly, we turn to analyze its error expansion. Once
this expansion is established, a new nodal-type rule can be proposed by making a
slight modification on the original one. As discussed in [21], the accuracy of the
original rule is always O(h2−2s). Excitingly, the new rule behaves more accurate, it
reaches O(h4−2s) if the singular point is far away from the endpoints, and O(h3−2s)
if very close to the endpoints, which is at least one order higher than the original
rule.

A motivation to study the nodal-type NC rule is to solve the corresponding
Hadamard finite-part integral equation defined by

(4)

{
Lu(x) = f(x), x ∈ (a, b),

u(a) = ua, u(b) = ub.


