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COUPLING METHOD OF PLANE WAVE DG AND BOUNDARY ELEMENT
FOR ELECTROMAGNETIC SCATTERING

QIYA HU, XINGYUE GUO, YANG LIU*, AND HAIJING ZHOU

Abstract. In this paper we are concerned with the coupling of plane wave method and the boundary element
method for electromagnetic scattering problems in unbounded domains, which are described by time-harmonic
Maxwell’s equations. We derive a coupled variational formula of the plane wave discontinuous Galerkin method
and the boundary element method for the underlying model problem, and introduce a discretization of the coupled
variational problem. The numerical results show that the proposed method is effective.
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1. Introduction

Computational electromagnetic has been a hot research field for a long time due to it-
s widely engineering application, such as electromagnetic analysis of circuits, antennas,
and wireless communication systems, etc. Differential equations and integral equations
are two basic forms for describing engineering problems. Therefore, numerical methods
in computational electromagnetic can be classified according to equations they are based
on. For example, the finite element method (FEM) and the finite difference time domain
(FDTD) are based on differential equations, while method of moments (MoM) and its
fast algorithms are based on integral equations. In recent years, with the enhancement of
computer technique, many hybrid frameworks of different numerical methods in computa-
tional electromagnetic have been developed rapidly for the increasing requirement of more
complicated engineering design and optimization.

Time-harmonic Maxwell’s equations in unbounded domains is a basic model in the sim-
ulation of electromagnetic scattering. There are many methods for the numerical solution
of this model problem, and among them the popular one is the coupling of finite elemen-
t method and the boundary element method (see, for example, [1], [2], [3] and [4]). In
recent years, the plane wave methods, which was first proposed for Helmholtz equation
(see [5], [6] and [7]), have been extended to the discretization of time-harmonic Maxwell’s
equations in bounded domains (see [8], [9] and [10]), since the plane wave methods can
generate higher accuracy approximations than the other methods for scattering problems
with middle or high frequency.

In the present paper, we extend the plane wave method to the discretization of time-
harmonic Maxwell’s equations in unbounded domains. We first derive a coupled variation-
al formula of the plane wave discontinuous Galerkin (PWDG) method and the boundary
element method (BEM) for the electromagnetic scattering problems. Then we introduce
a discretization of the coupled variational problem. A solution strategy for the resulting
algebraic system is also proposed. In particular, to demonstrate the ability of the proposed
method in dealing with complicated problems, we design a strategy for simplify of the
coupled variational formula to the case that describes scattering problems of the compos-
ite dielectric and conducting objects. We apply the proposed method to simulate several
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electromagnetic scattering examples, and we find that the method is effective and can gen-
erate approximate solutions with higher accuracy than the coupling of the traditional finite
element method and the boundary element method.

The paper is organized as follows: In Section 2, we describe the model problem; We
give a variational formulation in bounded domains based on the PWDG method in Sec-
tion 3; In Section 4, we derive a coupled variational problem of the PWDG method and
the boundary element method; The discretization for the coupled variational problem is
introduced in Section 5; In section 6, we discuss the application of the proposed method
to a particular model describing the scattering problems of the composite dielectric and
conducting objects; In Section 7, we report some numerical results; Finally, a conclusion
is give in Section 8.

2. Description of underlying Maxwell equations

Let Ω ⊂ R3 be a bounded domain, with Lipschitz-continuous boundary Γ = ∂Ω. Set
Ωc := R3\Ω. The relative permittivity and permeability for the domain Ω are denoted by
ϵr and µr, while ϵcr and µc

r are used to present the relative permittivity and permeability for
the domain Ωc. Here, the media in domain Ωc is assumed to be homogenous dielectric,
namely, ϵcr and µc

r are constant real numbers. Let ϵ0 and µ0 be permittivity and permeability
of free space. Then κ0 := ω

√
ϵ0µ0 is the wave number of the excitation in free space with

ω > 0 being the fixed angular frequency of the excitation. Moreover, the wave number of
the excitation in domain Ω and Ωc are κ̂ := κ0

√
ϵrµr and κ := κ0

√
ϵcrµ

c
r , respectively.

For a vector field F in Ω or Ωc, define the traces on Γ by γtF = n × (F × n) and
γNF = (∇ × F) × n, where n denotes the exterior unit normal vector on Γ from Ω into Ωc.

Let Ec and E denote the complex amplitude of the scattered electric field in Ωc and the
total electric field inside Ω, respectively. Consider the transmission problem (cf. [1] and
[3])

(1)



∇ × ∇ × Ec − κ2Ec = 0 in Ωc,

∇ × (
1
µr
∇ × E) − κ20ϵrE = 0 in Ω,

γtEc − γtE = −γtEinc,
1
µc

r
γNEc − 1

µr
γNE = − 1

µc
r
γNEinc on Γ,

lim
|x|→∞

(∇ × E × x − iκ|x|E) = 0,

where Einc stands for the complex amplitude of the electric field associated with the inci-
dent wave.

We also consider an important variant of the above model. Let Ω be the union of two
adjacent subdomains Ω(1) and Ω(2), as shown in Figure 1. The electric field E vanishes on
Ω(2) (supp E ⊂ Ω(1)). This particular case describes scattering problems of the composite
dielectric and conducting objects, such as micro-strip structures, antenna systems, aircraft
or missile with radar radome, etc (refer to [11], [12] and [13]). The subdomain Ω(1) corre-
sponds to the dielectric region, while the conducting region, in which the electric field E
vanishes, is denoted by the subdomain Ω(2).

Figure 1. The schematic of the two subdomains Ω(1) and Ω(2).


