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ON THE CONVERGENCE OF WEISSMAN-TAYLOR ELEMENT
FOR REISSNER-MINDLIN PLATE

JUN HU AND ZHONG-CI SHI

Abstract. In this paper, we study the Weissman-Taylor rectangular element

for the Reissner-Mindlin plate [12] model and provide a convergence analysis

for the transverse displacement and the rotation. We show that the element is

stable and locking free, thereby improve the results of [8] and [9].
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1. Introduction

The Reissner-Mindlin plate model is widely used by engineers. A direct finite
element approximation often yields poor results due to the shear locking, namely,
the numerical solution is significantly smaller than the exact one. The development
of general procedures to overcome this drawback is an active research area. Many
methods have been proposed so far. However, a rigorous convergence and stability
proof is missing for most of these methods, even if numerical tests show that they
work properly. This is the case for the rectangular element proposed by Weissman
and Taylor[12]. The element was analyzed in [8] and [9]. Nevertheless, whether the
element is locking free is unclear in the previous analysis.

In this paper, we show that the transverse displacement and the rotation are con-
vergent uniformly with respect to the plate thickness for the rectangular Weissman-
Taylor element. Therefore the element is locking-free. For simplicity, we consider
only a square mesh. However, the analysis is valid for a rectangular mesh as well.

The paper is organized as follows. The Reissner-Mindlin plate model is reviewed
in Section 2; the Weissman-Taylor element is introduced in Section 3; the error
analysis is presented in Section 4; and finally, a conclusion is given in Section 5.

Throughout the paper, C denotes a genetic constant, which is not necessarily
the same at different places. However, C is independent of the mesh size h and the
plate thickness t. We shall use standard notations of the Sobolev space.

2. Reissner-Mindlin Plate Model

Let Ω be a rectangle representing the mid-surface of the plate. Assume that
the plate is clamped along the boundary ∂Ω. Let ω and φ denote the transverse
displacement and the rotation, respectively, which are determined by the following

Problem 2.1. Find (φ, ω) ∈H1
0(Ω)×H1

0 (Ω), such that

(1) a(φ,ψ) + λt−2(∇ω − φ,∇v −ψ) = (g, v), ∀(ψ, v) ∈H1
0(Ω)×H1

0 (Ω).
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Here g is the scaled transverse loading, t is the plate thickness, λ = Eκ/(2+2ν)
is the shear modulus, E is the Young’s modulus, ν is the Poisson ratio and κ is
the shear correction factor. The bilinear form a is defined by a(η,ψ) = (CEη, Eψ),
here Cτ is defined for any 2× 2 symmetric matrix τ as

Cτ : =
E

12(1− ν2)
[(1− ν)τ + ν tr(τ)I] .

Introducing the shear strain

γ: = λt−2(∇ω − φ)

as an independent variable, we get the following mixed problem

Problem 2.2. Find (φ, ω,γ) ∈H1
0(Ω)×H1

0 (Ω)×L2(Ω), such that

a(φ,ψ) + (γ,∇v −ψ) = (g, v), ∀(ψ, v) ∈H1
0(Ω)×H1

0 (Ω),(2)

λ−1t2(γ, s)− (∇ω − φ, s) = 0, ∀s ∈ L2(Ω).(3)

The existence and uniqueness of the solution of Problem 2.2 and the following
regularity result can be found in [4, 9].

Lemma 2.3. Let (φ, ω,γ) ∈ H1
0(Ω)×H1

0 (Ω)× L2(Ω) be the solution of Problem
2.2, then the following regularity estimates hold

(4) ‖φ‖2 + ‖γ‖0 ≤ C‖g‖−1,

(5) ‖ω‖2 ≤ C(‖g‖−1 + t2‖g‖0), t‖φ‖3 ≤ C‖g‖0,

(6) ‖γ‖H(div) ≤ C‖g‖0, t‖γ‖1 ≤ C(‖g‖−1 + t‖g‖0).

3. Finite element approximation

Let Th be a uniform square partition of the domain Ω with the mesh size h,
which is the refinement of a coarser partition T2h with the mesh size 2h. Let FK

be the affine mapping from the reference square K̂ = [−1, 1]2 onto the element K,
which is defined by

FK(ξ, η) = (xk + hξ, yk + hη),

where (xk, yk) is the center of K. Denote v̂(ξ, η) = v(xk + hξ, yk + hη).
Define

Wh = {v ∈ H1
0 (Ω) | v̂|K̂ ∈ Q1(K̂) ∀K ∈ Th},

BNc = {v ∈ L2(Ω) | v̂|K̂ ∈ (1− ξ2, 1− η2) ∀K ∈ Th},

Γ̂h = {γ ∈ L2(Ω) | γ|K ∈ P1(K)2 ∀K ∈ Th},

ΓR
h = {χ ∈ L2(Ω) | χ̂|K̂ ∈ Q0,1 ×Q1,0 ∀K ∈ Th},

Γh = {χ ∈H0(rot,Ω) | χ̂|K̂ ∈ Q0,1 ×Q1,0 ∀K ∈ Th},

where (1− ξ2, 1− η2) is the non-conforming bubble space generated by 1− ξ2 and
1− η2, Q0,1 = (1, η), Q1,0 = (1, ξ).

Set
W ∗

h = Wh ⊕BNc,V
∗
h = [Wh]2 ⊕B2

Nc,V h = [Wh]2.


