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A BENCHMARK CALCULATION OF 3D
HORIZONTAL WELL SIMULATIONS
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Abstract. The simulation of realistic multiphase flow problems in petroleum

reservoirs requires means for handling the complicated structure of the reser-

voirs such as complex boundaries, faults, fractures, and horizontal wells. A

numerical reservoir simulator has recently been developed to be able to handle

these features for a wide range of applications. This fully implicit simulator

is based on a three-dimensional, three-phase black oil model. It can also be

used to solve a dual-porosity, dual-permeability black oil model in a fractured

reservoir. The space discretization method used in this simulator is based on

a block-centered finite difference method with harmonic averaged coefficients

(equivalently, a mixed finite element method). In this paper we report an

application of this simulator to a problem involving injection and production

from horizontal wells in a reservoir where a coning tendency is important, and

present a benchmark comparison with other simulators by fourteen petroleum

organizations.
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1. Introduction

Because of improved drilling technology interest in the modeling and numerical
simulation of horizontal wells in petroleum reservoirs has been rapidly increased [3].
The use of horizontal wells not only leads to the increased efficiency and economy of
oil recovery operations, also it decreases the coning behavior with an increase in well
length and enlarges oil sweeping volumes. For gas reservoirs with low permeability,
it decreases turbulence effects at gas wells and increases production rates.

This paper studies a problem which is concerned with the effect of horizontal well
lengths and rates on oil recovery. This effect is studied using a reservoir simulator we
have recently developed. This simulator is fully implicit and is based on a three-
dimensional, three-phase black oil model. It is capable of handling a fractured
reservoir with dual-porosity and dual-permeability. It can model nonlinear flow
around gas wells, treat some highly volatile oil and gas condensate systems, and
implement complex reservoir depletion projects. The space discretization method
used in this simulator is based on a block-centered finite difference method with
harmonic averaged coefficients (equivalently, a mixed finite element method [5]).

In this paper we report an application of our simulator to a problem involving in-
jection and production from horizontal wells in a reservoir where a coning tendency
is important, and present a benchmark comparison with other simulators by four-
teen petroleum organizations. The comparison is on oil production rates, water-oil
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production ratios, and pressures. This comparison indicates that our results are
close to the mean values of those by these fourteen organizations’ simulators, which
shows the correctness and reliability of our simulator. After we are confident with
our simulator, we use it to test well lengths and rates on oil recovery. This test pre-
dicts an increase in oil production and a decrease in coning effects with an increase
in well length. We also present a benchmark comparison between the compressible
case and the incompressible case for the black oil model considered. This compari-
son surprisingly shows that the numerical results match very well in these two cases
for the present model, and thus the incompressible case is a quite reasonable ap-
proximation of the compressible case. This experiment provides a sound numerical
basis for the common practice where the incompressible case is usually employed
for reservoir simulation tests because of its simple implementation.

This paper is outlined in the following fashion. In the next section we review
a three-dimensional, three-phase black oil model. Then, in the third section we
introduce the physical data for our numerical tests. The comparisons are carried
out in the fourth and fifth sections. Concluding remarks are given in the last section.

2. A Black Oil Model

In the black oil model problem considered, it is assumed that there are at most
three distinct phases: gas, oil, and water. Usually water is the wetting phase, oil
has an intermediate wettability, and gas is the nonwetting phase. Water and oil
are assumed to be immiscible and they do not exchange mass. Gas is assumed to
be soluble in oil but usually not in water. If the solubility of gas is assumed to be
zero at stock tank conditions, then reservoir oil can be considered to be a solution
of two components: stock tank oil and gas at standard conditions. Furthermore,
in this kind of treatment it is assumed that the fluids are at constant temperature
and in thermodynamic equilibrium throughout a reservoir. Under these conditions
the model equations for mass balance are given by [1]

∂

∂t
(φρwsw) +∇ · (ρwuw) = ρwqw,

∂

∂t
(φρo

oso) +∇ · (ρo
ouo) = ρo

oqo,

∂

∂t
(φ [ρg

oso + ρgsg]) +∇ · (ρg
ouo + ρgug) = ρg

oq
g
o + ρgqg,

where the subscripts w, o, and g stand for water, oil, and gas, respectively, φ is the
porosity of the reservoir, ρα, sα, and uα are the density, saturation, and volumetric
velocity of the α-phase, α = w, o, g, and qw, qo, qg

o , and qg denote source/sink terms.
The density ρo of the oil phase is

ρo = ρo
o + ρg

o,

where ρo
o and ρg

o indicate the partial densities of the two components in the oil
phase. The phase densities at reservoir conditions are related to densities at stock
tank conditions (ρ̄w, ρ̄o, and ρ̄g) as follows:

ρw =
ρ̄w

Bw
, ρo =

ρ̄o + Rsρ̄g

Bo
, ρg =

ρ̄g

Bg
,

where Bα is the formation volume factor of the α-phase, α = w, o, g, and Rs is the
gas solubility. Note that

ρo
o =

ρ̄o

Bo
, ρg

o =
Rsρ̄g

Bo
.


