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Abstract. We consider the discretization in time of a parabolic equation,

using a representation of the solution as an integral along a smooth curve in

the complex left half plane. The integral is then evaluated to high accuracy by

a quadrature rule. This reduces the problem to a finite set of elliptic equations,

which may be solved in parallel. The procedure is combined with finite element

discretization in the spatial variables. The method is also applied to some

parabolic type evolution equations with memory.
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1. Introduction

In this paper we present a survey of recent work on an approach to time disce-
tization of some equations of parabolic type based on Laplace transformation and
quadrature. Following work by Sheen, Sloan, and Thomée [7], [8], we first intro-
duce our method for an abstract parabolic equation, and then apply the method to
the heat equation and its spatial discretization by finite elements, which produces
a fully discrete scheme. We then describe work in McLean and Thomée [3] con-
cerning application of the method to an evolution equation with a memory term of
fractional integral type, and finally preview ongoing work by McLean, Sloan, and
Thomée [5], where the method is used for a parabolic integro-differential equation
with a memory term of convolution type. Our presentation here will be sketchy,
and we refer to the original papers for details.

We consider the approximate solution of a parabolic problem of the form

(1.1) ut + Au = f(t), for t > 0, with u(0) = u0,

where u0 and f(t) are given. Having in mind the case that A is a second order
elliptic differential operator with Dirichlet boundary conditions in a spatial domain
Ω, we consider the problem in the framework of a Banach space B. We assume that
A is a closed operator in B such that −A generates a bounded analytic semigroup
E(t) = e−At. More precisely, we assume that the spectrum σ(A) of A is contained
in a sector of the right half plane, and that that the resolvent (z I + A)−1 of −A
satisfies

(1.2) ‖(z I + A)−1‖ ≤ M(1 + |z|)−1, for z ∈ Σδ = {z : | arg z| < δ},
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with δ ∈ (π/2, π) and M independent of z. When A is symmetric and positive
definite in a Hilbert space, δ can be chosen as an arbitrary number in (π/2, π),
and M = O((π − δ)−1). Here we shall consider δ and M fixed. For the elliptic
differential operator case and B = C0(Ω̄), (1.2) was shown in Stewart [9].

The first step in our approach is to represent the solution u(t) as a contour
integral of the form

(1.3) u(t) =
1

2πi

∫

Γ

eztw(z) dz,

where w(z) is the Laplace transform of u,

(1.4) w(z) = û(z) =
∫ ∞

0

e−ztu(t) dt, for Re z ≥ x0,

with x0 ∈ R, and where initially Γ is an appropriately chosen line Γ0 in the complex
plane parallel to the imaginary axis. In (1.3), u(t) is then just the inverse Laplace
transform of w(z). For our purposes, however, assuming that w(z) may be con-
tinued analytically in an appropriate way, we shall want to take for Γ a deformed
contour in the set Σδ in (1.2), which behaves asymptotically as a pair of straight
lines in the left half plane, with slopes ±σ 6= 0, say, so that the factor ezt decays
exponentially as |z| → ∞ on Γ.

For concreteness, we take

(1.5) Γ = {z : z = ϕ(y) + iσy, y ∈ R} ⊂ Σδ, ϕ(y) = γ −
√

y2 + ν2,

for suitable positive parameters γ, ν, and σ . The curve Γ is then the left-hand
branch of a hyperbola, which crosses the real axis at α = ϕ(0) = γ − ν. Some of
the constants below will depend on the parameters of Γ.

Taking Laplace transforms in (1.1), we obtain the transformed equation

(1.6) (z I + A)w(z) = u0 + f̂(z),

and thus w(z) may be written formally as

(1.7) w(z) = (z I + A)−1(u0 + f̂(z)), for z ∈ Γ.

We assume that the Laplace transform f̂(z) has an analytic continuation from
Γ0 to our deformed contour Γ, so that all singularities of f̂(z) lie to the left of Γ.
The same property will then apply to w(z) in (1.7).

Using our assumptions on A,Γ, and f̂(z), one may use this representation of u(t)
to show the following stability and smoothness estimate.

Theorem 1.1. We have for the solution u(t) of (1.1), for j, k ≥ 0,

‖Aju(k)(t)‖ ≤ Ct−keαt(‖u0‖+ ‖f̂‖Γ), for t > 0, where ‖f̂‖Γ = sup
z∈Γ

|f̂(z)|.

In terms of the analytic semigroup E(t) we have for the solution of (1.1)

u(t) = E(t)u0 +
∫ t

0

E(t− s)f(s) ds, for t ≥ 0.

Since ‖E(t)‖ ≤ C0 for t ≥ 0 and for some C0 ≥ 1, one has the stability property

(1.8) ‖u(t)‖ ≤ C0

(‖u0‖+
∫ t

0

‖f(s)‖ ds
)
, for t ≥ 0.


