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A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT
DISCRETIZATIONS OF QUASI-NEWTONIAN STOKES FLOWS

ABDELLATIF AGOUZAL

Abstract. In this paper, we consider mixed finite elements discretizations

of a class of Quasi-Newtonian Stokes flow problem. Unified a posteriori error

estimator for conforming, nonconforming, with or without stabilization is ob-

tained. We prove, without Helmholtz decomposition of the error, nor regularity

and saturation assumptions, the reliability and the efficiency of our estimator.
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1. Introduction

Adaptive finite element method is justified by using a posteriori error estimate
which provides computable upper and lower error bounds, it serves then, as error
indicators. The aim of the work is to unify, generalize and refine the derivation of
residual error estimator for a class of Quasi-Newtonian Stokes flow problem. Indeed,
the present work take on unifying proof for conforming, nonconforming, and even
conforming-nonconforming scheme, with or without stabilization [4], and also mixed
formulation, in two and three dimensional cases [9]. We generalize, simplify and
refine the works of Verfürth [12] , Dari, Durán a nd Padra [8], Carstensen and
Funcken [6] and Gatica et al [9]. We prove, without Helmholtz decomposition of
the error, nor regularity of the solution or the domain, nor saturation assumption,
the efficiency and the reliability of our estimator.
Let Ω ⊂ IRd (d=2,3), be a bounded open connected and polyhedral set. In Ω, we
consider the following model problem:




Find (u, p) such that
−div(A(∇u)) +∇p = f, in Ω,

divu = 0, in Ω,
u = 0, on Γ = ∂Ω,

where u the velocity, p the pressure, f a regular function in the sapce (L2(Ω))d and
A : IRd×d −→ IRd×d is Lipschitz continuous function satisfying, there are positives
constants c1 and c2 such that: for all α, β ∈ IRd×d,

(1.1) c1‖α− β‖2 ≤ (A(α)−A(β)) : (α− β),

and

(1.2) ‖A(α)−A(β)‖ ≤ c2‖α− β‖,
(Colon denotes the scalar product in IRd×d).
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This kind of nonlinear Stokes problem appears in the modeling of a large class
of non-Newtonian fluids. In the particular case of Carreau law for viscoelastic flows
( see, e.g. [11]), we have

∀α ∈ IRd×d, A(α) = (k0 + k1(1 + ‖α‖2) β−2
2 )α,

with k0 ≥ 0, k1 > 0 and β ≥ 1. It is easy to verify that the Carreau law satisfies
(1.1) and (1.2) for all k0 > 0 and β ∈ [1, 2]. In particular, with β = 2 we find the
usual linear Stokes model.

In the sequel, we denote by W s,p(Ω) and W s,p(Γ), 0 ≤ s and 1 ≤ p ≤ +∞, the
usual Sobolev spaces (see e.g [1]), endowed with the norms ||.||s,p,Ω and ||.||s,p,Γ

respectively. For a non integer s, we use the notations |.|s,p,Ω and |.|s,p,Γ, given
explicitely, as following:

if p < +∞, |v|ps,p,Ω =
∫ ∫

Ω×Ω

||D[s]v(x)−D[s]v(y)||p
|x− y|d+pσ

dxdy,

if p = ∞, |v|s,+∞,Ω = sup
Ω×Ω

||D[s]v(x)−D[s]v(y)||p
|x− y|σ

and

|v|ps,p,Γ =
∫ ∫

Γ×Γ

||D[s]v(x)−D[s]v(y)||p
|x− y|d−1+pσ

dxdy,

where [s] is the integer part of s and σ = s − [s]. Hs(Ω) is the usual space W s,2

and Hs
0(Ω) the closure of D(Ω) in Hs(Ω).

In order to state the precise form of our estimator, we specify the hypothesis on
the class of finite elements spaces under questions. Let Th be a family of regular
triangulations by triangles or tetrahedron of Ω in the sens of Ciarlet [7], We denote
by N the set of all nodes in Th, and by K := N/Γ the set of free nodes. Let
φa denotes a hat function for a ∈ N which is piecewise linear function such that
∀b ∈ N φa(b) = δb

a, by ωa := {x ∈ Ω, φa(x) > 0} we denote the patch of a ∈ N
and we set ha := diam(ωa). Finally, we denoted by E the set of all edges ( faces )
of Th and by EI the set of all interior edges ( faces ) of Th.

We introduce the following spaces:

Vh = {vh ∈ L2(Ω), ∀T ∈ Th, vh|T ∈ (P1(T ))d, ∀e ∈ EI ,

∫

e

[vh]dσ = 0,

∀e edge ( face ) ⊂ Γ
∫

e

vhdσ = 0},

and
Mh = {qh ∈ L2

0(Ω),∀T ∈ Th, qh|T ∈ P1(T )},
In the sequel, we consider (uh, ph) ∈ (Vh)d ×Mh verifying: ∀vh ∈ (Vh ∩H1

0 (Ω))d,

(1.3)
∑

T∈Th

∫

T

A(∇uh).∇vh −
∑

T∈Th

∫

T

phdivvhdx =
∫

Ω

f.vhdx,

For abbreviation, we frequently write ‖.‖1,h,ω = {
∑

T∈Th,T⊂ω

‖.‖21,T }
1
2 and neglect

the domain when ω := Ω if there is no risk of confusion, and we denote by divh the
operator defined from

H(div; Th) := {σ ∈ (L2(Ω))d×d; ∀T ∈ Th, σ|T ∈ H(div; T )}
onto L2(Ω)d by:

∀T ∈ Th, divhσ = divσ on T.


