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MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN
POROUS MEDIA

MAÃLGORZATA PESZYŃSKA

Abstract. We define an error indicator for mixed mortar formulation of flow

in porous media. The mixed mortar domain decomposition method for single-

phase flow problems was defined by Arbogast et al; it relies on coupling of

subdomain problems using mortar Lagrange multipliers defined as continuous

piecewise linears on the subdomain interface. The accuracy and efficiency of

the resulting interface formulation depends on the number of mortar degrees of

freedom which we propose to adapt using error indicators involving jump of the

flux across the interface. Rigorous a-posteriori analysis and proof of reliability

of the estimator are established for single-phase 2D flow problems with diagonal

coefficients for RT[0] spaces on rectangular grids. Computational experiments

demonstrate the application of the estimator. Next, the algorithm and indicator

are extended to the two-phase flow case which is illustrated with numerical

examples. We focus on adapting the mortar grid while keeping subdomain

grids fixed. Full mortar adaptivity is discussed elsewhere.
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1. Introduction

This paper is devoted to grid adaptivity for a family of heterogeneous domain
decomposition methods based on the mixed mortar finite element method.

The method was introduced in [7] and it provides a rigorous optimally convergent
discretization technique for the elliptic equation

−∇ · (K∇p) = f, x ∈ Ω,(1)

with Ω ⊂ Rd, d = 2, 3. Here K denotes the diffusion coefficient, f denotes the
source/sink terms, and p is the unknown pressure.

In the mortar domain decomposition method, the region Ω is decomposed into
individual non-overlapping subdomains Ωi, i = 1, . . . n which are separated by the
union of interfaces Γ on which mortar grids and unknowns are introduced. The
subdomains are gridded independently; subdomain problems which are the local
counterparts of (1) can be solved essentially independently from one another but are
coupled by mortars; see [14, 12] for mortar formulation when subdomain problems
are solved with standard Galerkin (conforming) methods.

In the mixed mortar method the subdomain problems are solved using mixed
finite element methods thereby providing a locally conservative approximation to
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both pressure and velocity unknowns u := −K∇p. The method relies on introduc-
ing mortar Lagrange multipliers on the interface Γ which provide Dirichlet boundary
conditions for the subdomain problems. Additionally, the subdomain problems are
coupled by the requirement that the global velocities be weakly continuous across
Γ which relaxes the global continuity (of normal components across any smooth
surface) of exact velocities. This weak-continuity condition averages the jumps of
velocities and is defined relative to the discrete space of Lagrange multipliers on
the interface which are defined on a mortar grid characterized by the parameter
hm, or by the number of mortar degrees of freedom nm ≈ O( 1

hm
).

Let us be given a collection of rectangular partitions of Ωi with associated grid
parameter h = maxi hi. In principle, hm can be selected independently of h, as
long as certain lower and upper bound conditions hold. These guarantee, respec-
tively, the unique solvability of the mixed mortar formulation, and the optimal ap-
proximation properties of weakly continuous velocities which in turn are necessary
for the optimal rate of convergence of the method, the same as for discretization
without mortars. For this optimal convergence rate which, for lowest order Raviart-
Thomas spaces RT[0], is O(h) in both the pressure and velocity unknowns [46, 17],
hm should depend linearly on h; the approximation error increases, in general, with
the proportionality constant.

The number of mortar unknowns nm on Γ determines the complexity of the
interface problem. Recall that, in a classical domain decomposition setting, the al-
gorithm for approximation of (1) can be written in terms of the interface unknowns
and as such solved by an iterative algorithm which requires, in each iteration, solu-
tion of subdomain problems which are responding to the current guess of Dirichlet
data. In the mixed mortar algorithms the number of iterations on the interface in
general grows with nm, unless optimal preconditioners can be applied.

The mixed mortar method has been the cornerstone of several major reservoir
simulation projects. Recall that (1) can be used as a model for single-phase flow in a
reservoir Ω. Its natural extension is to the multi-phase flow; the algorithm has been
integrated within the IPARS (Integrated Parallel Accurate Reservoir Simulator)
framework [51, 44, 49, 41, 35]. The attractiveness of the mortar approach lies in
that it makes the subdomain problems independent from one another. It is only
the interface Lagrange multipliers (Dirichlet data) and the resulting fluxes (the
Neumann data) which provide “communication” between subdomains. As such,
the subdomain problems can be considered as “black-boxes” thereby allowing for
local adaptivity of time-stepping [43], grids and solvers, and mainly, the physical
models [37]. The latter coupling is a form of multiphysics and is an instance of
heterogeneous domain decomposition; see [50].

The difficulties in practical application of the overall procedure lie in finding
optimal preconditioners for the general multi-phase solver on the interface; see
[57]. However, in spite of the large complexity of the interface solver, the mixed
mortar approach has been extremely successful when applied to a large class of real
reservoir problems. It is important to note that in all the successful cases we found
a relatively small nm sufficient for a good level of accuracy and at the same time
mandatory for an acceptable degree of computational complexity.

In [45] the mixed mortar method gave rise to the mortar upscaling method. Here
the subdomain grids are kept fixed but nm varies, thereby providing a variable
degree of local conservation of mass or of weak-continuity of the fluxes.

It is in the research reported in [43, 37, 45] that the need to define the “right”
mortar grid and to control the error due to only weak continuity of fluxes became


