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Abstract. The paper discusses a general framework for handling curvilinear

geometries in high accuracy Finite Element (FE) simulations, for both elliptic

and Maxwell problems. Based on the differential manifold concept, the domain

is represented as a union of geometrical blocks prescribed with globally com-

patible, explicit or implicit parameterizations. The idea of parametric H1−,

H(curl)− and H(div) - conforming elements is reviewed, and the concepts of

exact geometry elements and isoparametric elements are discussed. The paper

focuses then on isoparametric elements, and two ways of computing FE dis-

cretization errors: a popular one, neglecting the geometry approximation, and

a precise one, utilizing the exact geometry representation. Presented numeri-

cal examples indicate the necessity of accounting for the geometry error in FE

error calculations., especially for the H(curl) problems.
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1. Introduction

The hp-adaptive FE methods are some of the most powerful methodologies for
simulating complex engineering problems. These numerical methods provide op-
timal sequences of hp-grids that achieve exponential convergence, whereas h or p
method converges only, at best algebraically [1, 6]. The advantages of hp methods
are achieved by the proper choice of meshing and mapping procedures to create a
finite element mesh over an arbitrary domain.

Sizable errors are introduced into the prediction of parameters when the geo-
metric approximation is too low w.r.t. 1 the polynomial order of the discretization.
[15, 16] show the importance of using properly mesh entities in high order dis-
cretization to solve partial differential equations. Current development efforts in
hp methods are aimed not only at a curvilinear mesh geometry representation over
curved domains [12], but also at the effective definition of meshes consisting of
mixed order elements.

Solving Boundary Value Problems(BVP) in complex geometries using hp finite
elements consists of a double discretization. First, a mesh is introduced in order to
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Figure 1. The exact and approximate domain of Finite Element Method.

create a discrete geometrical domain. Then, the solution function space is approxi-
mated by a finite dimensional function space. Both geometrical and function space
approximations introduce discretization errors into the solution. The element level
integral is represented abstractly as,

I =
∫

Ω

K(x)dx =
∫

Ω̂

K(Xex(ξ))dξ,(1)

where K represents integrands associated with the interior of element domain Ω.
The approximations can be introduced at one or more following basic functional lev-
els: approximation of Ω, approximation of K, approximation of integration method
over domain Ω. To evaluate the integral, the traditional method uses isoparametric
geometry representation Xhp(ξ) ∈ Ωhp, followed by the error integration on the ap-
proximate geometry domain Ωhp. We will refer to it as the Approximate Geometry
Integration (AGI),

I ≈ Ihp =
∫

Ωhp

Khp(x) d x =
∫

Ω̂

Khp(Xhp(ξ)) d ξ(2)

≈
∑

ξl

Khp(Xhp (ξl))ωl.

Here the weights ωl and quadrature points ξl are determined by the order of in-
tegration. Approximate geometry representation leads to inexact representation of
boundary and initial conditions and, therefore, inappropriate evaluation of element
level integrals. The exact solution u : Ω → IR cannot be compared directly to
the approximate solution uhp : Ωhp → IR because they are computed on different
physical domains, see Fig.1. This prompts us to develop a element mapping scheme
resulting in a modified meaning of the FE solution defined on the exact physical
domain:

uhp : Ω → IR(3)

Our study is primarily motivated with geometry induced error control. In this
paper, we consider the following two issues:

• A proper definition of the geometry error and its assessment.


