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Abstract. In this paper, we show that the piecewise linear finite element

solution uh and the linear interpolation uI have superclose gradient for tetra-

hedral meshes, where most elements are obtained by dividing approximate

parallelepiped into six tetrahedra. We then analyze a post-processing gradient

recovery scheme, showing that the global L2 projection of ∇uh is a supercon-

vergent gradient approximation to ∇u.
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1. Introduction

Superconvergence of the gradient for the finite element approximation for second
order elliptic boundary value problems and gradient recovery schemes have been
an active research topic; see, for example, Babus̆ka and Strouboulis [1], Chen and
Huang [8], Lin and Yan [12], Wahlbin [13] and Lakhany, Marek, and Whiteman
[11] for overviews of this field. Recently Bank and Xu [2, 3] have developed some
new techniques and obtained some new superconvergence results for linear finite
element elements on two dimensional triangular meshes. The goal of this paper
is to extend their results to three dimensions, namely to linear tetrahedral finite
element.

The model problem that we study in this paper is

−∇ · (D(x)∇u) = f, x ∈ Ω
u = 0, x ∈ ∂Ω.

Here D(x) is a 3 × 3 symmetric matrix function in (L∞(Ω))3×3 and uniformly
positive definite. For simplicity, we assume f is smooth enough and Ω is a polyedr
in R3 partitioned into a quasiuniform triangulation Th with mesh size h ∈ (0, 1).
Let Vh ⊂ H1

0 (Ω) be the corresponding finite element space of continuous piecewise
linear functions associated with Th, and let uh ∈ Vh be the finite element solution
of the above second order elliptic boundary value problem.

Unlike in the two dimensional case, superconvergence results in three dimensions
are relatively rare [7, 9, 10, 5]. The difficulty is partially due to the loss of symmetry
in three dimensions [4]. In this paper, we only deal with a special triangulation of
which most elements are obtained by dividing each O(h2) parallelepiped into six
tetrahedra (see Section 3 for details). For this kind of triangulation, we numerically
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observed that superconvergence occurs for linear elements, due to the cancellation
of the lowest order terms in some asymptotic expansion of the local error. It is,
however, difficult to combine elementwise error estimates together, since the normal
component of the gradients of the test functions is discontinuous. Thus we follow
the new approach in [2] to derive some expressions for the element error that involve
only the tangential derivative of the test function on the edges.

Our first result is that the gradient of the finite element approximation uh is
superclose to the gradient of the piecewise linear interpolant uI of the solution u.
More precisely, we have

(1) |uh − uI |1,Ω . h1+min(σ,1)‖u‖3,∞,Ω.

Estimate (1) holds on quasi-uniform meshes, where most elements are obtained by
dividing each O(h2) parallelepiped into six tetrahedra except for a region of size
O(h2σ); see Section 3 for details.

The estimate (1) is known in the literature for the special case σ = ∞ [7, 9, 10].
Recently Brandts and Kř́ıžek [5] extend the results of [7, 9, 10] for tetrahedra
into arbitrary n- simplex. Our new estimate (1) is a significant generalization,
since firstly, our analysis is based on local identities for each element and thus, it
is straightforward to extend our results to meshes in which an O(h1+α) (instead
of O(h2)) approximate local symmetry property holds for most patches of edges.
Second, the relaxation parameter σ makes our analysis to work for more general
meshes, especially for domains with unstructured boundaries.

Based on the superconvergence results, one can construct schemes to get better
approximations of ∇u; see for example, [16, 17, 14, 15] and [6]. The second major
component of this work is a superconvergent approximation to ∇u by a gradient
recovery procedure. In Section 4, we show that

(2) ‖∇u−Qh∇uh‖0,Ω . h1+min(σ,1/2)‖u‖3,∞,Ω,

where Qh is the L2 projection to V3
h. As remarked in [2], both the superconvergence

and gradient recovery results can be generalized to a more general non-self-adjoint
and possibly indefinite problem.

The rest of this paper is organized as follows. We introduce some notation and
technical identities for our analysis in Section 2. We prove the estimate (1) and (2)
in Section 3 and Section 4 respectively.

2. Local Error Expansion

In this section we shall derive some useful identities for our analysis. The key
identity is contained in Lemma 2.4, which is a generalization of the integral formu-
las of rectangular elements [12] and triangular elements [2] in two dimensions to
tetrahedral elements in three dimensions.

Let τ be a tetrahedron in R3, with vertices {pk}4k=1 and the corresponding
nodal basis functions (barycentric coordinates) {ϕk}4k=1. We assume that R3 has
the orientation given by the right-hand rule and τ has the induced orientation.
Let Fk denote the surface opposite vertex pk with the induced orientation and nk

the unit outward normal vectors of Fk. We also use the symbol 4klm to denote
the face with vertices pk,pl, and pm. If the orientation of 4klm, given by the
order of k, l, m, coincides with the induced orientation from τ , we say 4klm has the
consistent orientation with τ . Let eij denote the oriented edges of element τ from
pi to pj and tij , dij the corresponding unit tangent vectors and length, respectively
(see Fig 1). Let θkl be the angle between tkl and the supporting plane of Fl. In


