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Abstract. In this paper we consider superconvergence and supercloseness in

the least-squares mixed finite element method for elliptic problems. The su-

percloseness is with respect to the standard and mixed finite element approx-

imations of the same elliptic problem, and does not depend on the properties

of the mesh. As an application, we will derive more precise a priori bounds for

the least squares mixed method. The superconvergence may be used to define

a posteriori error estimators in the usual way. As a by-product of the analysis,

a strengthened Cauchy-Buniakowskii-Schwarz inequality is used to prove the

coercivity of the least-squares mixed bilinear form in a straight-forward man-

ner. Using the same inequality, it can moreover be shown that the least-squares

mixed finite element linear system of equations can basically be solved with one

single iteration step of the Block Jacobi method.
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1. Introduction

Superconvergence in finite element methods is an important topic in current
research, as is reflected in the references in the classical overview paper [19] but
also in the proceedings [20] and of course this issue of this journal. In the past
decade, much progress has been made. On the one hand, the so-called Chinese
school [12, 29, 30] has made progress in developing suitable interpolants of the
exact solution of a PDE to which its finite element approximation is superclose.
This strategy became necessary since results in [21] (and earlier work by the same
author) showed that the nodal interpolant often lacks this property, in particular
for n-simplicial elements in dimension n ≥ 2 of degree d with d > n. On the other
hand, the so-called patch-recovery technique [28, 26, 27] allows for superconvergence
on irregular meshes at the cost of additional computations on a patch of elements
surrounding an element. Finally, progress has also been made in proving (and, in
fact, disproving) localized bounds [14, 15, 23, 24, 25] for standard and mixed finite
element methods.

1.1. Least squares mixed finite elements. In this paper we turn our attention
to supercloseness and superconvergence in least-squares mixed finite element meth-
ods [11, 22] for elliptic equations. These methods aim to provide approximations
for the potential and the flux separately, just as mixed finite element methods. The
difference is that instead of posing a Ritz-Galerkin condition to select approxima-
tions from the subspaces, which results in a saddle-point problem that is not trivial
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[9, 10] to discretize, it employs a least-squares approach. Just as in the standard
Galerkin method, this leads to a symmetric coercive bilinear form and straightfor-
ward discretization.

A drawback of the least-squares mixed finite element method is that the errors in
both the potential and the flux influence one another; as a result, the well-known
Lemma by Céa is only able to yield a bound for the largest error of the two. It
may however be the case that one of the two errors is of higher order than the
other. To prove that in some situations this is indeed the case, one needs to rely on
other techniques. In [5] it was proposed to use supercloseness of the least-squares
mixed finite element approximations to well-known and well-defined reference func-
tions from the approximating spaces in order to give separate results for both the
potential and the flux.

1.2. Outline of this paper. We start in Section 2 with defining our model prob-
lem and fix our notations for Sobolev spaces and norms, in particular for some
weighted norms on product spaces. In Section 2.2, we recall the strengthened
Cauchy-Buniakowskii-Schwarz (CBS) inequality from [6] and put it in a slightly
more general context. In Section 2.3 we describe the least-squares mixed finite
element method for our model problem and give a one-line proof of the coercivity
of the associated bilinear form. Due to the strengthened CBS inequality, block-
diagonal preconditioning of the linear system results in a condition number of the
preconditioned matrix that is bounded uniformly in the stepsize; as an illustra-
tion, we prove separately that the block-Jaboci method (which is equivalent to
the block-diagonally preconditioned Richardson iteration) has convergence factor γ
when measured in the appropriate norm. Then, in Section 3, we turn to the ap-
plication of supercloseness to derive a priori bounds for the separate variables that
improve the standard bounds by Céa’s Lemma in case both approximating spaces
have different approximation quality. Finally, we briefly discuss superconvergence
by post-processing as a consequence of the supercloseness.

2. Preliminaries

As our model serves the following second order elliptic problem. Given f ∈
H−1(Ω), where Ω ⊂ Rn is a convex polytope, find u ∈ H1

0 (Ω) such that

(1) −div (A∇u) = f in Ω, u = 0 on ∂Ω,

where A is uniformly symmetric positive definite with Lipschitz continuous coeffi-
cients and with eigenvalues in the interval [β2, β−2] for some β ∈ (0, 1]. The formu-
lation of (1) as a system of first-order equations lies at the basis of the least-squares
mixed finite element method. This formulation is to find functions u ∈ H1

0 (Ω) and
p ∈ H(div ; Ω) such

(2) p = −A∇u in Ω, divp = f in Ω.

Since the spaces H1
0 (Ω) and H(div ; Ω) play a central part in the analysis, we will

derive a useful but nevertheless simple result that involves both of them. First
however some notations.

2.1. Weighted Sobolev norms and other notations. We use standard nota-
tions for Sobolev spaces and their norms and semi-norms; the L2-norm and inner
product we denote by | · |0 and (·, ·)0. Additional to the usual norms on H(div ; Ω)


