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Abstract. In this paper we present a priori error analysis for mixed finite el-

ement approximation of quadratic optimal control problems. Optimal a priori

error bounds are obtained. Furthermore super-convergence of the approxima-

tion is studied.

Key Words. optimal control, mixed finite element methods, error estimates,

and superconvergence.

1. Introduction

Finite element approximation of optimal control problems plays a very impor-
tant role among the numerical methods for these problems. The literature in this
aspect is huge. There have been extensive studies in convergence of the standard
finite element approximation of optimal control problems; see, for example, [1],
[2], [10], [14], [15], [24], and [32]. For optimal control problems governed by linear
state equations, a priori error estimates of the standard finite element approxima-
tion were established long ago; see, for example, [8] and [23]. It is, however, much
more difficult to obtain such error estimates for control problems where the state
equations are nonlinear or where there are inequality state constraints. For a class
of nonlinear optimal control problems with equality constraints, a priori error esti-
mates were established in [12]. Some important flow controls are included in this
class of problems. A priori error estimates have also been obtained for a class of
state constrained control problems in [31], though the state equation is assumed to
be linear. In [20] this assumption has been removed by reformulating the control
problem as an abstract optimization problem in some Banach spaces and then ap-
plying nonsmooth analysis. In fact, the state equation there can be a variational
inequality. Some recent progress in a priori error estimates can be found in [3], and
in [18], [21] and [22] for a posteriori error estimates. Systematic introduction of the
finite element method for PDEs and optimal control problems can be found in, for
example, [5], [13], [26], and [30].

In many control problems, the objective functional contains gradient of the state
variables. Thus accuracy of gradient is important in numerical approximation of the
state equations. Traditionally in such cases mixed finite element methods should
be used for discretisation of the state equations. In computational optimal control,
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mixed finite element methods are not as widely used as in engineering simulations.
In particular there doesn’t seem to exist much work on theoretical analysis of mixed
finite element approximation of optimal control problems in the literature.

In this paper we study error estimates and super-convergence of mixed finite
element schemes for quadratic optimal control problems. The problem that we are
interested in is the following optimal control problem:

(1.1) min
u∈K⊂L2(ΩU )

1
2

{∫

Ω

|p− p0|2 +
∫

Ω

(y − y0)2 +
∫

ΩU

u2

}

divp = f + Bu in Ω,(1.2)
p = −A∇y, in Ω,(1.3)

y = 0, on ∂Ω,(1.4)

where the bounded open set Ω ⊂ IR2 is a convex polygon or has smooth boundary
∂Ω, ΩU is a bounded open set in IR2 with Lipschitz boundary ∂ΩU , K is a closed
convex set in L2(ΩU ). Further specifications on data will be given later. The
coefficient matrix A ∈ L∞(Ω; IR2×2) is symmetric and uniformly elliptic, i.e., A(x)
is a symmetric and positive definite 2 × 2-matrix, with eigenvalues λj(x) ∈ IR
satisfying

(1.5) 0 < cA ≤ λ1(x), λ2(x) ≤ CA

for almost all x ∈ Ω.
In this paper we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω

with a norm || · ||m,p given by ||φ||pm,p =
∑
|α|≤m ||Dαφ||pLp(Ω), a semi-norm | · |m,p

given by ||φ||pm,p =
∑
|α|=m ||Dαφ||pLp(Ω). We set Wm,p

0 (Ω) = {φ ∈ Wm,p(Ω) : φ|∂Ω = 0}.
For p = 2, we denote Hm(Ω) = Wm,2(Ω) and || · ||m = || · ||m,2. In addition C
denotes a general positive constant independent of h.

2. Mixed finite element approximation of optimal control problems

Let

(2.1) V = H(div; Ω) = {v ∈ (L2(Ω))2, divv ∈ L2(Ω)},
endowed with the norm given by

||v||div = ||v||
H(div;Ω)

=
(||v||20,Ω + ||divv||20,Ω

)1/2
,

and

(2.2) W = L2(Ω).

We denote

(2.3) U = L2(ΩU ).

To consider the mixed finite element approximation of our optimal control prob-
lems, we need a weak formulation for the state equation (1.2)-(1.4). We recast
(1.1)-(1.4) in the following weak form: (CCP) find (p, y, u) ∈ V ×W ×U such that

(2.4) min
u∈K⊂L2(ΩU )

1
2

{∫

Ω

|p− p0|2 +
∫

Ω

(y − y0)2 +
∫

ΩU

u2

}

(A−1p, v)− (y, divv) = 0, ∀ v ∈ V ,(2.5)
(divp, w) = (f + Bu,w), ∀ w ∈ W,(2.6)


