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Abstract. A symmetric finite volume element scheme on quadrilateral grids

is established for a class of elliptic problems. The asymptotic error expan-

sion of finite volume element approximation is obtained under rectangle grids,

which in turn yields the error estimates and superconvergence of the averaged

derivatives. Numerical examples confirm our theoretical analysis.
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1. Introduction

Finite volume methods are a class of important numerical methods to solve PDEs
([2, 6, 8, 9, 14]), which can be viewed as a bridge between finite element methods and
finite difference methods. Due to being able to preserve some physical conservation
properties locally, such as mass, momentum and energy conservation, finite volume
methods are widely applied in many fields, such as computational fluid dynamics
and computational physics and so on.

The standard finite volume discretizations usually generate a linear systems with
asymmetric matrix for self-adjoint elliptic problems, in many cases, the symmetry is
the fundamental physical principle of reciprocity. This asymmetry leads to the fact
that many efficient iterative methods which are suitable for solving the symmetric
linear systems, such as the conjugate gradient method, can’t be employed. It is
interesting to see if there exist finite volume schemes that are symmetry preserving.
Recently, Aihui Zhou and Xiuling Ma([10, 11, 13]) proposed a class of symmetric
finite volume schemes under the triangular grids for solving the self adjoint elliptic
boundary value problems and parabolic problems, which gave a positive answer for
the triangular grids. However, the answer is still open for the quadrilateral grids so
far. For quadrilateral grids, the non-constant derivatives of finite volume element
makes the analysis more difficult since there is no convenient weak form.

In this paper, by choosing vertex-centered type control volume properly and
using finite volume element methods to discretize the balance equation, a symmet-
rical finite volume scheme on quadrilateral grids is established. Different from the
symmetrical finite volume scheme on the triangular grid, There is no weak form
available, so the convergence analysis is more difficult. Here we give a detailed
analysis for rectangle grids only. The main ingredients are the bound estimate of
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the minimum eigenvalue for the coefficient matrix of our scheme and asymptotic
expansions of the truncation error. The asymptotic error expansion of finite vol-
ume element approximation is obtained under rectangle grids, which in turn yields
the error estimates and superconvergence of the averaged derivatives. Numerical
examples confirm our theoretical analysis and show the efficiency of the method on
general quadrilateral grids.

2. Preliminary

In this paper, we consider the following model problem,
{ −∇(a(x)∇u) = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2.1)

where Ω ∈ R2 is a convex polygonal domain with boundary ∂Ω, x = (x1, x2), c1 ≤
a(x) ≤ c2 and c1, c2 are two positive real numbers.

For simplicity, we introduce the notation <∼, >∼ as same as that in paper ([3])
which means that when we write A <∼ B, A >∼ B then there exist two positive
constant c and C such that A ≤ cB,A ≥ CB respectively.

Let P1,1 = {a0 + a1ξ1 + a2ξ2 + a3ξ1ξ2 : al ∈ R, l = 0(1)3} be the set of bilinear
polynomial, and Wm,p(Ω) be the Sobolev space with the norms:

‖v‖m,p = (
∑

|α|≤m

‖Dαv‖Lp(Ω))
1
p , 1 ≤ p < ∞,

‖v‖m,∞ = max
|α|≤m

‖Dαv‖L∞(Ω), p = ∞,

where α = (α1, α1, ..., αn), |α| =
n∑

i=1

αi, αi > 0, 1 ≤ i ≤ n.

In addition, we assume that Ωh = {Ei, 1 ≤ i ≤ M} is any given quadrilateral
grid of Ω ( shown as Fig. 1(a) and (b)), and X = {Xi = (xi

1, x
i
2), 1 ≤ i ≤ N} is

the set of all nodes in Ωh, where M and N are the total numbers of all partition
elements and nodes respectively.

Figure 1. (a) uniform grids. (b) non-orthogonal grids.

In order to establish the finite volume scheme, we need to introduce the dual
partition Ωh

∗ = {bXi , 1 ≤ i ≤ N} of Ωh, where bXi be the dual element(control
volume) of the node Xi shown in Fig. 2(a). In this figure, Oil

, 1 ≤ l ≤ 4 is the
”center” of the l-th quadrilateral element neighboring to Xi, which is mapped from
the center of the reference unit square element E shown as in Fig. 2(b) by the
bilinear isoparametric transformation , and Mil

, 1 ≤ l ≤ 4 are midpoints of all
edges connected with Xi. Additionally, for any quadrilateral element Ek, we call


