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Abstract. An axiomatic approach to the numerical approximation Y of
some stochastic process X with values on a separable Hilbert space H is pre-
sented by means of Lyapunov-type control functions V. The processes X and
Y are interpreted as flows of stochastic differential and difference equations,
respectively. The main result is the proof of some extensions of well-known de-
terministic principle of Kantorovich-Lax-Richtmeyer to approximate solutions
of initial value differential problems to the stochastic case. The concepts of
invariance, smoothness of martingale parts, consistency, stability, and contrac-
tivity of stochastic processes are uniquely combined to derive efficient conver-
gence rates on finite and infinite time-intervals. The applicability of our results
is explained with drift-implicit backward Euler methods applied to ordinary
stochastic differential equations (SDEs) driven by standard Wiener processes
on Euclidean spaces H = R? along functions such as V(z) = Zf:o ciz?t. A
detailed discussion on an example with cubic nonlinearity from field theory
in physics (stochastic Ginzburg-Landau equation) illustrates the suggested ax-

iomatic approach.
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1. Introduction

Many dynamic problems in Natural Sciences, Engineering, Environmental Sci-
ences and Econometrics lead to models governed by nonlinear and dissipative sto-
chastic ordinary and partial differential systems. These systems are explicitly solv-
able very rarely. Thus one has to resort to numerical approximations. In determinis-
tic theory there are well-known principles for the approximation of their solutions in
appropriate Banach spaces. Two of them are the principles of Kantorovi¢ [17], [11]
and Lax and Richtmeyer [24], [34], combining stability, consistency and convergence
for well-posed problems. However, in the stochastic case, there is substantially less
known about their counterparts. We are going to continue our works exhibited in
[35] - [46] by establishing basic approximation principles for stochastic processes
X, Y which have values in random Hilbert spaces H or Banach spaces with norms
defined via subadditive pseudo-bilinear forms. As the simplest application we bear
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in mind the case of stochastic ordinary differential equations (SDEs) and their nu-
merical approximations with variable step sizes. (An application to some types of
stochastic partial differential equations (SPDEs) with appropriate relation between
space- and time-discretization for their approximations is conceivable too, but left
to future work). In this paper the time-evolution of the global discretization-error is
considered without taking into account any discretization of the state space. Note
that the herein suggested axiomatic approach to the analysis of numerical approx-
imations is especially efficient within the framework of “eigenfunction approach”
applied to quasilinear SPDEs.

For the description of the approximation problem we assume the following. Fix
a complete probability space (92, F, (Fi)o<i<t,P) with deterministic finite time-
interval [0,7]. Let H = H(w) be a separable random Hilbert space with (F;)o<i<r-
adapted scalar product < .,. >y and real numbers as its scalars, and let u be any
nonrandom, o-finite, positive measure on ([0,7],B([0,7])). Here B(.) represents
the o-field of all Borel-sets of the inscribed set. X = (X;(w))o<i<r and ¥ =
(Yi(w))o<t<r denote two (F;)-adapted stochastic processes on the given probability
space with values in one and the same Hilbert space H. Then, obviously, the vector
space
Xi(w) € H(w) for all times t,
Xt is (F¢, B(H)) — measurable,
X cadlag with respect to time ¢,
JTE < X, Xi >u du(t) < +o0

HQ([O’TLF’HH) =X = (Xt(w))OStST :

forms a Hilbert space with scalar product
T
<X, X >H2::/ E < X, X; >5 du(t)
0

and real numbers as its scalars. The naturally induced norms are given by

1XWlm == V<X, X >m, |IX [, = V<X X >h,e

We are interested to tackle the approximation problem of X by Y (and also Y by
X, thanks to the inherent symmetry) on this space, in particular, on the subset

Dy = {X € Ho([0,T), 0, H) : sup E < X, Xy >p< Jroo}.
0<t<T
Furthermore, let [K]_ > 0 denote the negative part of K, and [K]; > 0 its positive
part such that we have K =[K|; — [K]_.

The paper is organized as follows. Section 2 commences with the statement of
main concepts and assumptions to prove a fairly general approximation theorem
for convergence rates of numerical approximations with variable step sizes. In
Sections 3 and 4 we present two versions of this theorem for the most general and
dissipative case. The main purpose of this paper is to publish a fairly complete
proof of universal error estimates for the approximation of some Hilbert-space-
valued stochastic processes while incorporating information on certain Lyapunov-
function(al)s V' = V(z). This significantly extends the applicability of our original
work [45] where we only considered the very restricted case of V(z) = 1+||z||? from
practical point of view (cf. example in Section 6.2). The main theorems 3.1 and 4.1
have already been formulated in [44], but without any detailed proof-steps. Here
the complete proof incorporating the role of Lyapunov-functions V (z) (much more
general than V(x) = 1 + ||z||?) is presented by dividing it into a series of auxiliary
lemmas as done in Section 5. Section 6 briefly discusses the fairly transparent case
of ordinary stochastic differential equations and drift-implicit Euler methods in R,



