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LINEAR ADVECTION WITH ILL-POSED BOUNDARY
CONDITIONS VIA L1-MINIMIZATION

JEAN-LUC GUERMOND1,2 AND BOJAN POPOV1

Abstract. It is proven that in dimension one the piecewise linear best L1-

approximation to the linear transport equation equipped with a set of ill-posed

boundary conditions converges in W 1,1
loc to the viscosity solution of the equation

and the boundary layer associated with the ill-posed boundary condition is

always localized in one mesh cell, i.e., the “last” one.
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1. Introduction

The goal of this paper is to explain a phenomenon that has been reported in [4];
namely, finite-element-based best L1-approximations seem to converge to viscosity
solutions of some classes of first-order PDE’s. In particular we prove in this paper
that it is indeed the case in dimension one for the linear transport equation equipped
with a set of ill-posed boundary conditions.

To explain our interest for finite element best L1-approximations and ill-posed
boundary conditions, we now briefly recall the result from [4] that we exactly refer
to. We denote by Ω a bounded domain of Rd with smooth boundary. Let α > 0 be
a real number and let β ∈ [C1(Ω)]d be a smooth vector field. Let u0 be a smooth
function on ∂Ω, say u0 ∈ C2(∂Ω), and let f ∈ W 1,1(Ω). Following Bardos–le
Roux–Nédélec, [2], we say that u is a viscosity solution to

(1.1) αu +∇·(βu) = f ; u|∂Ω = u0,

if u ∈ BV(Ω), u solves the PDE, and u satisfies the boundary condition in the
following sense

(1.2)
∫

∂Ω

(β·n)(u− k)(sg(u− k)− sg(u0 − k)) ≥ 0, ∀k ∈ R,

where sg(t) is the sign of t if t 6= 0 and sg(0) = 0. In the present linear case, the
boundary condition amounts to enforcing u = u0 on ∂Ω− = {x ∈ ∂Ω |β(x)·n(x) <
0}.

Using arguments similar to those in [2] and [1], it is possible to prove that (1.1)
has a unique viscosity solution provided α is large enough. The bulk of the argument
consists of proving that the solution to the following problem

(1.3) αuε +∇·(βuε)− ε∇2uε = f ; uε|∂Ω = u0,
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converges in L1(Ω) and the limit is the so-called viscosity solution, i.e. the limit
satisfies the PDE (1.1) and the boundary condition (1.2).

Despite its appearance, the problem (1.1) is not purely formal. It arises when one
tries to approximate (1.3) on finite element meshes that are not refined enough. For
instance, denoting by h the mesh size, whenever ε/h2 � ‖β‖L∞/h, the second-order
term in (1.3) is completely dominated by the first-order one, and approximating
(1.3) in this circumstance amounts to trying to solve (1.1), where the boundary
condition is understood in the classical sense instead of (1.2).

It has been shown in [4] that the best L2-approximation (i.e., Least-Squares) does
not converge to the right limit of (1.3) under the limiting process limh→0 limε→0.
The situation is quite different in L1(Ω), since for reasons that will be detailed
latter, the best L1-approximation to (1.1) converges to the viscosity solution. Before
going into the details of the proof and to illustrate this claim, we now reproduce a
numerical experiment reported in [4].

Consider the 2D rectangular domain Ω =]0, 1[2 and set ∂ΩD = {x = 0}∪{x = 1}
and ∂ΩN = {y = 0} ∪ {y = 1}, i.e., We want to solve the following scalar problem

(1.4) u + ∂xu = 1; u|∂ΩD
= 0,

Of course the above problem is not well-posed in the usual sense, since the outflow
boundary condition is over-specified, but it is meaningful in the viscosity sense. Let
{Xh}h>0 be a sequence of H1-conforming finite element spaces constructed on a
shape regular mesh family and such that for all vh in Xh, vh|∂ΩD

= 0. We show
in figure 1 the best L1-approximation and the best L2-approximation of the above
problem using a coarse mesh, h = 1/10. The P1 Lagrange interpolant of the exact
solution is shown in the left panel, the best L1-approximation is in the center panel,
and the best L2-approximation is shown in the right panel. Considering the mesh
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Figure 1. Viscosity solution to (1.4) from [4]. Left: P1 Lagrange
interpolant of exact solution; center, L1 solution; right, L2 solution.

used, the best L1-approximation is a reasonable approximation, whereas the Least-
Squares solution is completely wrong. Contrary to what it looks, the two horn-like
spikes observable on the graph of the L1-solution are not over-shootings. These are
perspective effects induced by the fact that the two corresponding P1-nodes are not
aligned with the others. Given that the Least-Squares method together with its
many variants is a central part for the stabilization of the Galerkin technique (see
e.g. [3, 6, 7]), the above example gives new reasons why the Galerkin-Least-Squares
method cannot generally cope properly with shocks and boundary layers without
the help of shock-capturing terms [7, 5].

The rest of the paper is organized as follows. In §2 we introduce the ill-posed
one-dimensional linear advection problem under scrutiny in this paper. The discrete


