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INCREMENTAL UNKNOWNS AND GRAPH TECHNIQUES

WITH IN-DEPTH REFINEMENT

SALVADOR GARCIA AND FLORENTINA TONE

(Communicated by Roger Temam)

Abstract. With in-depth refinement, the condition number of the incremental

unknowns matrix associated to the Laplace operator is p(d)O(1/H2)O(| logd h|3)

for the first order incremental unknowns, and q(d)O(1/H2)O((logd h)2) for

the second order incremental unknowns, where d is the depth of the refine-

ment, H is the mesh size of the coarsest grid, h is the mesh size of the finest

grid, p(d) =
d − 1

2
and q(d) =

d − 1

2

1

12
d(d2 − 1). Furthermore, if block di-

agonal (scaling) preconditioning is used, the condition number of the precon-

ditioned incremental unknowns matrix associated to the Laplace operator is

p(d)O((logd h)2) for the first order incremental unknowns, and q(d)O(| logd h|)

for the second order incremental unknowns. For comparison, the condition

number of the nodal unknowns matrix associated to the Laplace operator is

O(1/h2). Therefore, the incremental unknowns preconditioner is efficient with

in-depth refinement, but its efficiency deteriorates at some rate as the depth of

the refinement grows.
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1. Introduction

The incremental unknowns—first introduced by Temam [22] through approxi-
mate inertial manifolds and spatial multilevel finite-difference discretizations—are
a natural tool to study the long-term dynamic behavior of nonlinear dissipative
evolutionary equations. Although only dyadic and triadic refinements have been
considered so far, Temam has already suggested the use of incremental unknowns
with in-depth refinement, ibid., page 169.

As an example, the numerical solution of the incompressible Navier-Stokes equa-
tions [20, 21] with Dirichlet boundary value conditions on a staggered marker-and-
cell (MAC) grid [16] entails the numerical solution of the (generalized) Poisson
equation with Dirichlet and Neumann boundary conditions on a classical and stag-
gered grid [13]; the incremental unknowns with dyadic refinement appear there as
an efficient preconditioner. In what follows, we present an analysis of the Poisson
equation: we first introduce the equation, then its spatial finite-difference discretiza-
tion (variational approach), the self-similar interpolating continuous function, the
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incremental unknowns with in-depth refinement and the graph techniques. With
Ω =]0, 1[×]0, 1[, the Poisson equation with Dirichlet boundary conditions is

{
−∆u = f in Ω,

u = ϕ on Γ = ∂Ω.

We consider the preconditioned incremental unknowns matrix K−1Âh, where

Âh = ST ÃhS. Here Ãh = PTAhP, where P stands for the permutation matrix
from hierarchical order to lexicographical order, Ah = −∆h, and ∆h is the finite-
difference Laplace operator. In addition, S stands for the transfer matrix from the
incremental unknowns ζ to the nodal unknowns u, i.e., u = Sζ, and K stands for a
suitable symmetric block diagonal matrix.

With in-depth refinement, the condition number of the incremental unknowns
matrix associated to the Laplace operator is p(d)O(1/H2)O(| logd h|3) for the first
order incremental unknowns, and q(d)O(1/H2)O((logd h)2) for the second order
incremental unknowns, where d is the depth of the refinement, H is the mesh

size of the coarsest grid, h is the mesh size of the finest grid, p(d) =
d− 1

2
and

q(d) =
d− 1

2

1

12
d(d2 − 1). Furthermore, if block diagonal (scaling) preconditioning

is used, the condition number of the preconditioned incremental unknowns matrix
associated to the Laplace operator is p(d)O((logd h)2) for the first order incremental
unknowns, and q(d)O(| logd h|) for the second order incremental unknowns. For
comparison, the condition number of the nodal unknowns matrix associated to the
Laplace operator is O(1/h2). Therefore, the incremental unknowns preconditioner
is efficient with in-depth refinement, but its efficiency deteriorates at some rate as
the depth of the refinement grows.

Related conditioning analyses for dyadic refinement are done using a functional
analytic argument [4, 3, 2, 24], whereas here we present a purely linear algebraic
reasoning for in-depth refinement, following the corresponding analysis with dyadic
refinement from [12].

This analysis consists in:

• describing the block-matrix structure of the matrix (SK−1ST )−1, with
graph techniques;

• deriving an appropriate upper bound of the preconditioned generalized
Rayleigh quotient

(v, (SK−1ST )−1v)

(v, h2(−∆h)v)
;

• deriving an upper bound of the maximum eigenvalue of the incremental

unknowns matrix Âh.

Incremental unknowns with triadic refinement have been introduced by Poul-
let [19] for the numerical solution of the generalized Stokes equations. Moreover,
computational experiments displayed therein (see page 37, Fig. 6) show that this
condition number is O((log3 h)2), agreeing with the theoretical results presented
herein (with the coarsest grid reduced to one point). No conditioning analysis is
reported therein.

As usual, the symbols (·, ·) and | · | will denote the scalar product and norm of
the Hilbert space L2(Ω). Throughout this article, c will denote an absolute positive
constant, which may be different at different occurrences.

The outline of this paper is as follows. In Section 2, we present the incremental
unknowns framework: first we introduce the incremental unknowns with in-depth


