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Abstract. We consider the Stokes-Oldroyd equations, defined here as the

Stokes equations with the Newtonian constitutive equation explicitly included.

Thus a polymer-like stress tensor is included so that the dependent variable

structure of a viscoelastic model is in place. The energy equation is cou-

pled with the mass, momentum, and constitutive equations through the use of

temperature-dependent viscosity terms in both the constitutive model and the

momentum equation. Earlier works assumed temperature-dependent constitu-

tive (polymer) and Newtonian (solvent) viscosities when describing the model

equations, but made the simplifying assumption of a constant solvent viscosity

when carrying out analysis and computations; we assume no such simplifica-

tion. Our analysis coupled with numerical solution of the problem with both

temperature-dependent viscosities distinguishes this work from earlier efforts.
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1. Introduction

Viscoelastic flows occur in a variety of applications, including polymer process-
ing. The complexity of the governing equations and the physical domains makes
analysis of the mathematical models and the associated numerical methods espe-
cially difficult. Current efforts to model viscoelastic flows often revolve around
the solution of a (modified) Stokes problem, [5]. The isothermal linear elasticity
equations, modified in form to have the same dependent variable structure as the
equations governing viscoelastic flows, is analyzed along with a numerical solu-
tion in [2]. The Stokes problem is a special case (the incompressible limit) of the
equations considered in that work.

The purpose of this paper is to analyze the finite element solution of the non-
isothermal Stokes problem, modified similarly as in [2]. Thermodynamics play a
prominent role in many viscoelastic flow scenarios, especially in polymer process-
ing. Realistic models must ultimately include temperature dependence, since flow
characteristics such as viscosity vary widely as temperature varies within normal
operating constraints, [1].

The rest of this paper is outlined as follows. The governing equations are pre-
sented in the next section, with particular attention given to the manner in which
temperature dependence is expressed. Details regarding the weak formulation and

Received by the editors February 21, 2006 and, in revised form, February 23, 2006.
2000 Mathematics Subject Classification. 65N30.
This research was supported in part by the ERC program of the National Science Foundation

under Award Number EEC-9731680 through the Center for Advanced Engineering Fibers and
Films at Clemson University.

425



426 C. COX, H. LEE, AND D. SZURLEY

corresponding function spaces are provided in Section 3. In Section 4, the finite
element formulation is developed along with an existence result for the finite ele-
ment solution. Convergence results for the finite element solution are derived in
Section 5, and numerical confirmation of these results are presented in Section 6.
The paper concludes with a summary and a discussion of continuing work.

2. Governing Equations

We consider fluid flowing through a bounded, connected domain Ω ⊂ Rd́, whose
boundary we denote as Γ. Let the velocity be denoted by u, pressure p, extra stress
σ, temperature T , and unit outward normal to the boundary n. For viscoelastic
fluid flow, the extra stress tensor is often split into a solvent and polymer part,

σ = σs + σp.

Normally the solvent part of the extra stress is assumed to be Newtonian, i.e.

σs = 2
ηs(T )
η0(TR)

d(u),

where the rate-of-deformation tensor d(u) is defined as

d(u) =
1
2

(
∇u + (∇u)T

)
,

ηS is the solvent viscosity which depends at most on the temperature, and η0(TR)
is the zero-shear viscosity at a reference temperature TR. A nonlinear differential
or integral constitutive model is imposed for the polymer part σp, [1]. As in [2],
we simplify the constitutive model to a Newtonian relationship, and include this
equation explicitly to preserve the dependent variable structure associated with
viscoelastic constitutive models, such as Giesekus or Oldroyd-B. Whereas only the
isothermal case is considered in [2], we analyze the case where both σp and σs

depend on temperature. Specifically, we assume that

(2.1) σp − 2α1(T )d(u) = 0,

where an Arrhenius equation characterizes the dependence of polymer viscosity
(also scaled to η0(TR)) upon temperature, i.e.

α1(T ) = A1 exp
(

B1

T

)
,

and B1 6= 0. The coefficients A1 and B1 are defined so that 0 < α1(T ) ≤ 1. We
assume the existence of maximum and minimum values for the viscosity

(2.2) α1,min ≤ α1(T ) ≤ α1,max.

The (scaled) solvent viscosity is defined in a similar manner so that

(2.3) σs − 2εα2(T )d(u) = 0,

with

α2(T ) = A2 exp
(

B2

T

)
.

Once again we choose A2 and B2 so that 0 < α2(T ) ≤ 1 and

(2.4) α2,min ≤ α2(T ) ≤ α2,max,

but here we may have B2 = 0. The definition of σs includes ε because the solvent
part of the viscosity is assumed to be much smaller than the polymer part. Further-
more, the term 2εα2(T )d(u) has special significance in that it increases stability.
Hence the parameter ε is considered a penalty parameter, and is assumed small.


