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This paper is dedicated to Max Gunzburger on the occasion of his 60th birthday.

Abstract. Although the methodology of centroidal Voronoi tessellation (CVT)

has been widely used for mesh generation on complex geometries, a clear char-

acterization of the influence of geometric constraints on the CVT-based meshing

is still lacking. In this paper, we first give a clear definition of the conforming

centroidal Voronoi Delaunay triangulation (CCVDT) and then propose an effi-

cient algorithm for its construction in two dimensional space. Finally, we show

the high-quality of CCVDT meshes and the effectiveness and robustness of our

algorithm through extensive examples.
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1. Introduction

Mesh generation often forms a crucial part of the numerical solution procedure
in many applications. In the past few decades, automatic, unstructured mesh
generations for complex 2D/3D domains have provided very successful tools for
solving complex application problems, some of those well-studied techniques in-
clude AFT [22, 24], Octree [26], Voronoi/Delaunay-based methods [1, 3–5, 27, 30],
and DistMesh [25]. It is well known that the quality of Delaunay-based triangu-
lar/tetrahedral meshes is greatly affected by the placement of the generating points
of the associated Voronoi regions. Many work has been devoted to finding robust
and efficient algorithms to distribute the generating points by some optimal crite-
ria, for example, the Laplacian smoothing [16], the centroidal Voronoi tessellation
(CVT) [9] and the optimal Delaunay triangulation (ODT) [7]. We here are specially
interested in the first approach.

Centroidal Voronoi tessellation proposed in [9] is a special Voronoi tessellation
having the property that the generators of the Voronoi diagram are also the centers
of mass, with respect to a given density function, of the corresponding Voronoi cells.
CVTs are very useful in many applications, including but not limited to image and
data analysis, vector quantization, resource optimization, design of experiments,
optimal placement of sensors and actuators, cell biology, territorial behavior of
animals, numerical partial differential equations, point sampling, meshless comput-
ing, mesh generation and optimization, reduced-order modeling, computer graphics,
and mobile sensing networks. Recently, CVT and its duality centroidal Voronoi De-
launay triangulation (CVDT) based mesh generation and mesh optimization have
attracted a lot of attention and been used for many applications due to its optimal
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properties, see [1, 2, 10, 11, 13–15]. For example, in the medical imaging and sim-
ulation for surgical operations whcich are used to not just diagnose the patient’s
ailments but also test alternative treatments, a mesh generator with good trian-
gle/tetrahedron quality and robust control over the mesh sizing and the number of
elements is desired for numerical simulations [29].

In this paper, we propose an effective and efficient algorithm for high-quality
triangular mesh generation based on the CVT-methodology, specifically, the con-
forming centroidal Voronoi Delaunay triangulation (CCVDT). The plan of the rest
of the paper is as follows. We first give a brief introduction to the concept of CVT
in Section 2.1, and then generalize the definition for conforming mesh generation
of complicated geometries in Section 2.2. We also propose an algorithm for ap-
proximate CCVDT mesh construction in two dimensional space in Section 3, and
some mesh examples generated by our algorithm for different geometries are given
in Section 4 to show the high quaity of CCVDT meshes. Finally we make some
concluding remarks in Section 5.

2. Conforming Centroidal Voronoi Delaunay Triangulation

2.1. Centroidal Voronoi tessellation. Given an open bounded domain Ω ∈ Rd

and a set of distinct points {xi}n
i=1 ⊂ Ω. For each point xi, i = 1, . . . , n, define the

corresponding Voronoi region Vi, i = 1, . . . , n, by

(1) Vi =
{
x ∈ Ω | ‖x− xi‖ < ‖x− xj‖ for j = 1, · · · , n and j 6= i

}

where ‖ · ‖ denotes the Euclidean distance in Rd. Clearly Vi ∩ Vj = ∅ for i 6= j,
and ∪n

i=1V i = Ω so that {Vi}n
i=1 is a tessellation of Ω. We refer to {Vi}n

i=1 as
the Voronoi tessellation (VT) of Ω associated with the point set {xi}n

i=1. A point
xi is called a generator; a subdomain Vi ⊂ Ω is referred to as the Voronoi region
corresponding to the generator xi. It is well-known that the dual tessellation (in
a graph-theoretical sense) to a Voronoi tessellation of Ω is the so-called Delaunay
triangulation (DT). The Voronoi regions Vi’s are convex polygons if Ω is convex
and their vertices consist of circumcenters of the corresponding Delaunay triangles.

Given a density function ρ(x) ≥ 0 defined on Ω, for any region V ⊂ Ω, define
x∗, the mass center or centroid of V by

(2) x∗ =

∫

V

yρ(y) dy
∫

V

ρ(y) dy
.

Then a special family of Voronoi tessellations is defined in the following [9]:

Definition 1. We refer to a Voronoi tessellation {(xi, Vi)}n
i=1 of Ω as a centroidal

Voronoi tessellation if and only if the points {xi}n
i=1 which serve as the generators

of the associated Voronoi regions {Vi}n
i=1 are also the centroids of those regions,

i.e., if and only if we have that

(3) xi = x∗i for i = 1, . . . , n .

The corresponding Delaunay triangulation is then called a centroidal Voronoi De-
launay triangulation.

General Voronoi tessellations do not satisfy the CVT property. It is worth noting
that CVT or CVDT may not be unique [9]. The CVT concept also can be gener-
alized to very broad settings that range from abstract spaces and distance metrics
to discrete point sets [9, 11].


