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Abstract. In mathematical studies of molecular motors, the stochastic motor

motion is modeled using the Langevin equation. If we consider an ensemble of

motors, the probability density is governed by the corresponding Fokker-Planck

equation. Average quantities, such as, average velocity, effective diffusion and

randomness parameter, can be calculated from the probability density. The

WPE method was previously developed to solve Fokker-Planck equations (H.

Wang, C. Peskin and T. Elston, J. Theo. Biol., Vol. 221, 491-511, 2003). The

WPE method has the advantage of preserving detailed balance, which ensures

that the numerical method still works even when the potential is discontinuous.

Unfortunately, the accuracy of the WPE method drops to first order when

the potential is discontinuous. Here we propose an improved version of the

WPE method. The improved WPE method a) maintains the second order

accuracy even when the potential is discontinuous, b) has got rid of a numerical

singularity in the WPE method, and c) is as simple and easy to implement as

the WPE method. Numerical examples are shown to demonstrate the robust

performance of the improved WPE method.
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1. Introduction

Molecular motors are samll, and, as a result, the motor operation is dominated
by high viscous friction and large thermal fluctuations from the surrounding fluid
environment [1]. In general, a molecular motor has many internal and external
degrees of freedom. One of these degrees of freedom is associated with the motor’s
unidirectional motion, the main biological function of the motor. For example, a
kinesin dimer walks along a microtubule toward the positive end [5, 6]. There are
many levels of models for molecular motors, from simple kinetic models with a few
states to all atom molecular dynamics. In a modeling approach of intermediate level,
the unidirectional motion is followed explicitly and the effects of other degrees of
freedom are modeled in the mean field potential affecting the unidirectional motion
[7, 8, 9].

To introduce this modeling approach of intermediate level, we consider the one
dimensional motion of a small object in water. The motion of the object is governed
by the Newton’s second law:

(1) m
dv

dt
= −ζv − φ′(x) +

√

2kBTζ
dW (t)

dt
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where x is the coordinate along the dimension of motion, m is the mass and v = dx
dt

the velocity of the object, ζ is the drag coefficient, φ(x) a potential affecting the
motion of object, and W (t) is the Weiner process. The object is affected by a) the
drag force −ζv, which is always opposing the motion, b) the force derived from the
potential, and c) the Brownian force. Both the drag force and the Brownian force
are caused by the bombardments of surrounding water molecules. The amplitude
of Brownian force is related to the drag coefficient as

√
2kBTζ, which is a result of

the fluctuation-dissipation theorem [16, 17, 18]. Here kB is the Boltzmann constant
and T the absolute temperature [13].

In (1), there is a very short time scale associated with the object forgetting
about its instantaneous velocity. It is called the time scale of inertia [11]. For both
theoretical analysis and numerical solutions, it is more convenient to get rid of this
short time scale and make the system non-stiff. We start by rewriting (1) as

(2)
dv

dt
= − 1

t0

[

v −
(

−Dφ
′(x)

kBT
+
√

2D
dW (t)

dt

)]

where D = kBT
ζ is the diffusion coefficient, and t0 = m

ζ has the dimension of time.

In (2), in the absence of potential φ(x), the autocorrelation of the instantaneous
velocity satisfies

(3) 〈v(s)v(s+ t)〉 = 〈v2(s)〉 exp

(−t
t0

)

where 〈·〉 denotes the average. It is clear that the object forgets about its current
velocity after a small multiples of t0. That is why t0 is called the time scale of
inertia. In the simple case where the object is a spherical bead of radius σ, the
mass and the drag coefficient are respectively [1]

(4) m =
4

3
πρσ3 , ζ = 6πησ

where ρ is the density and η the viscosity of water. The time scale m
ζ is proportional

to the square of radius: t0 = m
ζ = O

(

σ2
)

. Consequently, for small objects, the

time scale t0 = m
ζ is extremely small. For a bead of 1µm in diameter, the time

scale of inertia is t0 = 56 × 10−9s = 56ns [10].
When t0 is very small, (2) is well approximated by

(5) v =

[

−Dφ
′(x)

kBT
+
√

2D
dW (t)

dt

]

The reduction from (2) to (5) in the limit of small t0 is called the Einstein-
Smoluchowski limit [16, 14]. This reduction can be illustrated intuitively by con-
sidering a simple model equation: y′ = − 1

t0
(y − f(t)). The exact solution of the

model equation is given by

y(t) = f(t) + exp

(−t
t0

)

(y(0) − f(t))

+
1

t0

∫ t

0

exp

(−(t− s)

t0

)

(f(s) − f(t)) ds(6)

When t0 is small and t >> t0, the exact solution satisfies approximately y(t) = f(t),
which is comparable to (5). Writing (5) as a differential equation for x, we obtain

(7)
dx

dt
= −Dφ

′(x)

kBT
+
√

2D
dW (t)

dt


