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HOW RATES OF Lp-CONVERGENCE CARRY OVER TO
NUMERICAL APPROXIMATIONS OF SOME CONVEX,

NON-SMOOTH FUNCTIONALS OF SDES

HENRI SCHURZ

Abstract. The relation between weak and p-th mean convergence of numer-

ical methods for integration of some convex, non-smooth and path-dependent

functionals of ordinary stochastic differential equations (SDEs) is discussed. In

particular, we answer how rates of p-th mean convergence carry over to rates

of weak convergence for such functionals of SDEs in general. Assertions of

this type are important for the choice of approximation schemes for discounted

price functionals in dynamic asset pricing as met in mathematical finance and

other commonly met functionals such as passage times in engineering.
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1. Introduction

Suppose that the risky asset price (X(t))t≥0 is governed by systems of Itô-type
stochastic differential equations (SDEs) such as noisy ordinary differential equations

(1) dX(t) = a(t, X(t))dt +
m∑

j=1

bj(t,X(t))dWj(t)

driven by Wiener processes or martingale-type noises Wj with respect to the forward
filtration (Ft)t≥0 on the complete probability space (Ω,F ,P). For some overview
on the theory of SDEs, e.g. see Arnold [2], Gard [10], Oksendal [20] or Protter [21].

One obviously knows that the construction of efficient numerical approximations
of path-dependent functionals F of X such as discounted price functionals

(2) Fr,p,X(t, T ) = E

[
exp

(
−

∫ T

t

r(s)ds
)
p((X(s))0≤s≤T )

∣∣∣Ft

]

at exercise times 0 ≤ t ≤ T (T time of maturity) is important in the theory of
dynamic asset pricing. Here (r(t))t≥0 ≥ 0 is interpreted as an interest rate and p as
a Borel-measurable functional on the risky asset price (X(t))t≥0. The simplest and
most cited example in finance is that of constant nonrandom interest rate r (or r
satisfying SDEs such as (1)) and non-differentiable, but convex pricing functional

(3) p((X(s))0≤s≤T ) = (X(T )−K)+
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where K is the striking price, T time of maturity and (.)+ denotes the nonnegative
part of inscribed expression. This occurs in the European call and put options.
Others are given by look-back, Russian and Asian options.

Unfortunately, there are only very few models which allow to compute the price
functionals F analytically. So one has to resort to numerical techniques to approx-
imate F and p in general. Many authors have dealt with methods for numerical
integration of solutions of Itô-type SDEs (1) and its functions F (X(T )) at fixed
terminal time T . For example, see Allen [1], Artemiev and Averina [3], Bouleau
and Lépingle [6], Gard [10], Kloeden, Platen and Schurz [14], Milstein [17], Schurz
[25, 27, 31], Talay [33, 34, 35], Wagner and Platen [36]. Almost all of their meth-
ods are based on the classic Taylor expansion and its Runge-Kutta-type substi-
tutions. However, most of those methods sometimes lack of rigorous statements
on stability, positivity and convergence when complex nonlinearities, convexity or
path-dependence in F are present.

The aim of this paper is to show how one can have a “minimal guarantee” of
convergence and qualitative justification of numerical integration techniques which
are needed to approximate functionals F such as given by (2) or similar ones under
non-smooth assumptions or path-dependence. For this purpose, we shall exploit
known and more easily verifiable facts on Lp-convergence rates. There are several
good reasons why we prefer to use nonstandard implicit, strongly converging meth-
ods as originally introduced in [25, 18], studied in [23, 30] and continued by [19],
[11], or even for quasilinear random PDE by [5]. Their good stability, boundary
and positivity behavior is one of them. We shall justify these methods by studying
how the rates of p-th mean convergence carry over to the rates of weak convergence
along some functionals F despite non-smoothness or path-dependence. In particu-
lar, some new proof techniques come up by using integral representations of convex
functions involving positive Radon measures. Another advantage is seen by the
fact that we do not need to suppose very restrictive assumptions on the smooth-
ness and boundedness of the coefficients of underlying SDEs as commonly met in
the literature on stochastic numerics. This paper exhibits supplemental remarks to
the results presented in Kanagawa and Ogawa [13] and Talay [33, 34]. Moreover,
we do not focus too much on fairly known results which are supposed to be known
to the readership. See Allen [1], Schurz [27], Talay [34] or appendix A for a quick
overview on basic facts related to stochastic-numerical analysis.

The paper is organized as follows. Section 2 discusses how convergence rates
of Lp-approximations carry over to rates of weak approximations while dealing
with functionals involving convex functions. These estimates are only advanta-
geous when not so much smoothness can be imposed on the functional F and its
ingredients r, p and X (in contrast to standard requirements such as p ∈ C∞, p
continuously differentiable or Lipschitz-continuous drift and diffusion coefficients of
r and X). See [17, 34] for approximation rates of very smooth functions F (X(T ))
(actually they only consider functions F (X(T )), not real functionals) or those F
with non-degenerate infinitesimal generator of price process X. Section 3 proves
a general theorem to control the total L1-approximation error of path-dependent
functionals such as F in (2). We also state a theorem on convergence of Hölder-
continuous functionals. Eventually, we list numerous examples of functionals in-
volving convex structures in Section 4. An appendix (Sections A.1 - A.3) resumes
basic facts on numerical methods for Itô SDEs and its concepts convergence to in-
crease the understanding of a more general audience. All in all, this paper presents
just a supplemental discussion on some more complex issues related to numerical


