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A UNIFORMLY OPTIMAL-ORDER ERROR ESTIMATE OF
AN ELLAM SCHEME FOR UNSTEADY-STATE

ADVECTION-DIFFUSION EQUATIONS
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Abstract. We prove an optimal-order error estimate in a weighted energy

norm for the Eulerian-Lagrangian localized adjoint method (ELLAM) for unsteady-

state advection-diffusion equations with general inflow and outflow boundary

conditions. It is well known that these problems admit dynamic fronts with

interior and boundary layers. The estimate holds uniformly with respect to the

vanishing diffusion coefficient.

Key Words. characteristic methods, Eulerian-Lagrangian methods, interpo-

lation of spaces, uniform error estimates

1. Introduction

We consider unsteady-state advection-diffusion equations with general inflow and
outflow boundary conditions, which arise in mathematical modeling of petroleum
reservoir simulation, environmental modeling, and other applications [1, 7]. It is
well known that these problems admit solutions with dynamic fronts and complex
structures including interior and boundary layers, and present serious mathematical
and numerical difficulties. Classical finite difference or finite element methods tend
to generate numerical solutions with nonphysical oscillations, while upwind methods
often produce excessive numerical diffusion that smears out fronts and generates
spurious grid orientation effects [7].

Eulerian-Lagrangian methods combine the advection and capacity terms in the
governing equations to carry out the temporal discretization in a Lagrangian co-
ordinate, and discretize the diffusion term on a fixed mesh in an Eulerian manner
[4, 5, 11]. These methods symmetrize the governing equation and stabilize their
numerical approximations. They generate accurate numerical solutions and signifi-
cantly reduce the numerical diffusion and grid-orientation effect present in upwind
methods, even if large time steps and coarse spatial meshes are used. Eulerian-
Lagrangian methods were shown to be very competitive in terms of accuracy and ef-
ficiency [4, 12]. Mathematically, A priori optimal-order error estimates were derived
for the modified method of characteristics (MMOC) [5] and the modified method
of characteristics with adjusted advection [4] for unsteady-state advection-diffusion
equations with periodic or noflow boundary conditions and the Eulerian-Lagrangian
localized adjoint method (ELLAM) for unsteady-state advection-diffusion equa-
tions with general boundary conditions [13, 10]. However, the general constant in
this type of estimates may depend inversely on the vanishing diffusion parameter.
Consequently, these estimates could blow up as the diffusion coefficient tends to
zero. To our best knowledge, there is no a priori optimal-order error estimate in a

Received by the editors March 31, 2007.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

286



A UNIFORM ESTIMATE FOR THE ELLAM SCHEME 287

weighted energy norm for an Eulerian-Lagrangian method with uniform partition
for unsteady-state advection-diffusion equations with general inflow and outflow
boundary conditions, which holds uniformly with respect to the vanishing diffusion
parameter.

In contrast to the steady-state analogue where a uniform L∞ error estimate was
derived for numerical methods with a Shishkin mesh [9], unsteady-state advection-
diffusion equations admit dynamic interior and boundary layers and complicated
structures. These boundary and interior layers are dynamic and do not always coin-
cide with the spatial mesh. Consequently, a uniform error estimate in the L∞-norm
is generally impossible, since the true solution could exhibit shock discontinuity in
the limiting case of the diffusion parameter vanishes. This is why L∞ norm is not
used in the numerical analysis for hyperbolic conservation laws [8]. The goal of
the present paper is to derive an optimal-order error estimate in a weighted en-
ergy norm for the ELLAM scheme for unsteady-state advection-diffusion equations
with general inflow and outflow boundary conditions. Thus, these results theoreti-
cally justify the numerical advantages of Eulerian-Lagrangian methods, which were
observed numerically [11, 12, 13].

This paper is organized as follows. Sections 2 and 3 recall preliminary results on
Sobolev and interpolation results and revisit the ELLAM scheme, respectively. In
this section 4, we prove an ε-uniform optimal-order error estimate in a weighted-
energy norm for the ELLAM scheme for unsteady-state advection-diffusion equa-
tions with an inflow total flux and an outflow diffusive flux boundary conditions,
which admit both interior and boundary layers. In section 5, we prove auxiliary
estimates that were used in the proof in section 4.

2. Model Problem and Preliminaries

We consider the unsteady-state advection-diffusion equation in one space dimen-
sion with a representative combination of an inflow total flux boundary condition
and an outflow diffusive flux boundary condition. The analysis in this paper applies
to any combinations of boundary conditions. For the sake of exposition, we restrict
ourselves to this representative combination of boundary conditions, which is well
known to present mathematical and numerical difficulties in the theoretical analysis
of Eulerian-Lagrangian methods [13]

(1)

ut + (V (x, t)u− εD(x, t)ux)x = f(x, t), (x, t) ∈ (a, b)× (0, T )

V u(a, t)− εDux(a, t) = g(t), t ∈ (0, T ]

−εDux(b, t) = h(t), t ∈ (0, T ]

u(x, 0) = uo(x), x ∈ [a, b].

Here V (x, t) is a velocity field, f(x, t) accounts for external sources and sinks, g(t)
and h(t) are the prescribed inflow and outflow boundary data, respectively, uo(x)
is the prescribed initial data, and u(x, t) is the ε-dependent unknown function.
D(x, t) is a diffusion coefficient with 0 < Dmin ≤ D(x, t) ≤ Dmax < +∞ for any
(x, t) ∈ [a, b] × [0, T ] and 0 < ε << 1 is a parameter that scales the diffusion and
characterizes the advection-dominance of Eq. (1).

Let W k
p (a, b) consist of functions whose weak derivatives up to order-k are p-th

Lebesgue integrable in (a, b). Let Hk(a, b) := W k
2 (a, b). For any Banach space X,


