
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 2, Pages 331–351

OPTIMAL DESIGN OF THE SUPPORT OF THE CONTROL FOR
THE 2-D WAVE EQUATION: A NUMERICAL METHOD

ARNAUD MÜNCH

Abstract. We consider in this paper the homogeneous 2-D wave equation

defined on Ω ⊂ R2. Using the Hilbert Uniqueness Method, one may associate

to a suitable fixed subset ω ⊂ Ω, the control vω of minimal L2(ω × (0, T ))-

norm which drives to rest the system at a time T > 0 large enough. We

address the question of the optimal position of ω which minimize the func-

tional J : ω → ||vω ||L2(ω×(0,T )). Assuming ω ∈ C1(Ω), we express the shape

derivative of J as a curvilinear integral on ∂ω × (0, T ) independently of any

adjoint solution. This expression leads to a descent direction and permits to

define a gradient algorithm efficiently initialized by the topological derivative

associated to J . The numerical approximation of the problem is discussed

and numerical experiments are presented in the framework of the level set ap-

proach. We also investigate the well-posedness of the problem by considering

its relaxation.
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1. Introduction - Problem statement

We consider in this work a general optimal design problem in the context of the
(exact) controllability. There is by now a large interest in optimal shape design
theory [9, 14], specially for dynamical system [13, 24], which consists in optimizing
the distributions of materials or the shape of a mechanical structure in order to reach
a suitable optimal behavior with respect to some initial excitation. On the other
hand, since twenty years, a huge literature in the field of control has been devoted to
the modeling and the analysis of mechanical systems, stabilized or exactly controlled
in time, by some boundary or internal dissipative mechanisms [16, 17, 18, 19].
For instance, we mention the example of a multi-layered composite plate locally
controlled by some piezo-electric device [15]. In order to extend this optimization
process, it appears natural to optimize the shape and design of such dissipative
mechanisms, distributed on the structure. We treat here this question in the context
of the 2-D wave equation with an internal control. To the knowledge of the author,
the coupling of these two notions - shape optimal design and exact controllability
- has not been addressed so far.

Let us consider a Lipschitzian bounded domain Ω ∈ R2, two functions (y0, y1) ∈
H1

0 (Ω) × L2(Ω) and a real T > 0. In the context of the exact distributed con-
trollability, one may determine a subset ω of positive Lebesgue measure for which
the following property holds (see [3, 12, 19]) : there exists a control function vω ∈
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L2(ω×(0, T )) such that the unique solution y ∈ C([0, T ]; H1
0 (Ω))∩C1([0, T ];L2(Ω))

of

(1)





ytt −∆y = vωXω, Ω× (0, T ),

y = 0, ∂Ω× (0, T ),

(y(·, 0), yt(·, 0)) = (y0, y1), Ω,

satisfies

(2) y(., T ) = yt(., T ) = 0, on Ω.

yt denotes the derivative of y with respect to t and Xω ∈ L∞(Ω, {0, 1}) denotes the
characteristic function of the subset ω. We introduce the set

(3) V (y0, y1, T ) = {ω ⊂ Ω such that (2) holds}
which contains in particular Ω. Moreover, from [3] assuming Ω ∈ C∞(R2), any
subset ω satisfying the geometric control condition in Ω (”Every ray of geometric
optics that propagates in Ω and is reflected on its boundary enters ω in time less
than T”) belongs to V (y0, y1, T ). On the other hand, if Ω is rectangular and T large
enough (dependent of the diameter of Ω\ω), then any domain ω is in V (y0, y1, T )
(see [12]).

The control problem formulated above is usually referred to as internal (or dis-
tributed) controllability problem. The controllability property may be obtained us-
ing the Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions in [19], which
reduces the problem to an optimal control one. Precisely, for any ω ∈ V (y0, y1, T ),
the unique control vω of minimal L2-norm (refereed as the HUM control in the
sequel) may be obtained by minimizing the functional J : L2(Ω) × H−1(Ω) → R
defined by
(4)

J (φ0, φ1) =
1
2

∫

ω

∫ T

0

φ2(x, t)dtdx+ < φt(·, 0), y0 >H−1(Ω),H1
0 (Ω) −

∫

Ω

y1φ(·, 0)dx,

where < ·, · >H−1,H1
0

denotes the duality product between H−1(Ω) and H1
0 (Ω) and

φ the solution of the adjoint homogeneous system

(5)





φtt −∆φ = 0, Ω× (0, T ),

φ = 0, ∂Ω× (0, T ),

(φ(·, T ), φt(·, T )) = (φ0, φ1), Ω.

This provides the following characterization of the HUM-control (see [19], chapter
7).

Theorem 1.1. Given any (y0, y1) ∈ H1
0 (Ω)× L2(Ω), T > 0 and ω ∈ V (y0, y1, T ),

the functional J has a unique minimizer (φ̂0, φ̂1) ∈ L2(Ω) × H−1(Ω). If φ̂ is the
corresponding solution of (5) with initial data (φ̂0, φ̂1) then v = −φ̂Xω is the control
of (1) with minimal L2-norm.

This result is based on the following observation or observability inequality (lead-
ing to the coercivity of J in L2(Ω) × H−1(Ω)): there exists a constant CT,ω > 0
function of T and ω (called the observability constant) such that

(6) ||(φ0, φ1)||2L2(Ω)×H−1(Ω) ≤ CT,ω

∫

ω

∫ T

0

φ2(x, t)dt dx


