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ERROR BOUNDS ON SEMI-DISCRETE FINITE ELEMENT
APPROXIMATIONS

OF A MOVING-BOUNDARY SYSTEM
ARISING IN CONCRETE CORROSION

ADRIAN MUNTEAN

Abstract. Finite element approximations of positive weak solutions to a one-

phase unidimensional moving-boundary system with kinetic condition descri-

bing the penetration of a sharp-reaction interface in concrete are considered.

A priori and a posteriori error estimates for the semi-discrete fields of active

concentrations and for the position of the moving interface are obtained. The

important feature of the system of partial differential equations is that the non-

linear coupling occurs due to the presence of both the moving boundary and

the non-linearities of localized sinks and sources by reaction.
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1. Introduction

In real-world applications one frequently needs to determine both the a pri-
ori unknown domain, where the problem is stated, as well as the solution itself.
Such settings are typically named moving or free boundary problems. A particu-
larly important moving-boundary problem refers to the determination of the depth
at which molecules of gaseous carbon dioxide succeed to penetrate concrete-based
structures [8]. The process can be summarized as follows: Gaseous carbon dioxide
from the ambient air penetrates through the porous fabric of the unsaturated con-
crete, dissolves in pore water and reacts with calcium hydroxide, which is available
by dissolution from the solid matrix. Calcium carbonate and water are therefore
formed via the reaction mechanism

(1) Ca(OH)2(s→ aq) + CO2(g→ aq)→ CaCO3(aq→ s) + H2O.

The physicochemical process associated with (1) is called concrete carbonation.
Although this chemical reaction seems to be harmless (i.e. not corrosive), it may
produce unwanted microstructural changes, and hence, it represents one of the most
important reaction-diffusion scenarios that affect the service life of concrete-based
structures. In combination with the ingress of aggressive ionic species (like chloride
[32] or sulfate [1]), the carbonation process typically facilitates corrosion, and hence,
cracking and spalling of the concrete may occur [5, 8].

Conceptually different moving-boundary models for the carbonation penetration
in concrete have been recently proposed in [2, 3, 21] and analyzed by the author in
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his PhD thesis [19]. This paper represents a preliminary study in what the error
analysis of finite elements approximations for 1D two-phase moving-boundary sys-
tems with kinetic conditons is concerned. Our one-dimensional formulation refers
to the slab [0, L] (L ∈]0,∞[), away from corners or any other geometric singularity;
see Fig. 1 for details. In this case, solving the moving-boundary model means the
calculation of the involved mass concentrations and of the a priori unknown posi-
tion of the moving interface, where the reaction is concentrated. Our main goal is to
prove that the spatially semi-discrete solutions converge to the solution of the PDE
system in question when the mesh size decreases to zero. A priori error estimates
will show an order of convergence of O(h) for the FEM semi-discretization of the
model, where h denotes the maximum mesh size. An a posteriori error estimate is
also obtained.

The paper is organized in the following fashion: We state the moving-boundary
problem in section 2. Section 3 collects the technical preliminaries and section 4
presents the assumptions on which the error analysis relies. Along the lines of
this section, we also formulate the functional framework and the concept of weak
solution. The main results of this paper are announced in section 5 and proved in
section 6 and section 7. Finally, a short summary and few conclusions and further
remarks are given in section 8.

2. Statement of the problem

We denote by u1 and u2 the concentration of CO2(g) and CO2(aq), respectively,
u3 the Ca(OH)2(aq) concentration, u4 the CaCO3(aq) concentration, and finally,
u5 represents the concentration of moisture produced by (1). The basic geometry
is depicted in Fig. 1.

The problem reads: Find the concentrations vector u = u(x, t) (x ∈ Ω1(t) =
]0, s(t)[, where t ∈ ST :=]0, T [ with T ∈]0,∞[, u = (u1, u2, . . . , u5)t) and the
position s(t) (t ∈ ST ) of the interface Γ(t) := {x = s(t) : t ∈ ST } such that the
couple (u, s) satisfies the following system of mass-balance equations

u1,t −D1u1,xx = P1(Q1u2 − u1) in Ω1(t),(2)
u2,t −D2u2,xx = −P2(Q2u2 − u1) in Ω1(t),(3)

u3,t = S3,diss(u3,eq − u3) at Γ(t),(4)
u`,t −D`u`,xx = 0 (` ∈ {4, 5}), in Ω1(t),(5)

initial conditions

ui(0, x) = ui0(x) in Ω1(0) (i ∈ {1, 2, 4, 5}), u3(0) = u30, at Γ(0),(6)

and boundary conditions

ui(t, 0) = λi(t), t ∈ ST (i ∈ {1, 2, 4, 5})(7)
−D1u1,x(s(t), t) = ηΓ(u(s(t), t) + s′(t)u1(s(t), t)(8)

−D2u2,x(s(t), t) = s′(t)u2(s(t), t)(9)
−D`u`,x(s(t), t) = ηΓ(u(s(t), t) (` ∈ {4, 5}).(10)

In order to close the system, the couple (u, s) also needs to satisfy the non-local
relation

(11) s′(t) = ηΓ(u(s(t), t)), t ∈ ST with s(0) = s0.

To formulate (2)-(11), a set of parameters are employed. In Assumption (I), we
summarize their range of application. The physical meaning of the parameters and
their restrictions is explained in [19].


