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Abstract. The aim of this paper is to study the convergence analysis of three

low order Crouzeix-Raviart type nonconforming rectangular finite elements to

Maxwell’s equations, on a mixed finite element scheme and a finite element

scheme, respectively. The error estimates are obtained for one of above elements

with regular meshes and the other two under anisotropic meshes, which are as

same as those in the previous literature for conforming elements under regular

meshes.
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1. Introduction

It is well-known that Maxwell’s equations are very important equations in the
electric-magnetic fields and are usually solved with finite element methods(see [1-
8]). P.Monk [2-4] described a mixed finite element scheme and a finite element
scheme, respectively, and provided convergence and superconvergence analysis for
smooth solutions for three-dimensional Maxwell’s equations. Lin and Yan [5] im-
proved Monk’s results by means of the technique of integral identity. The simi-
lar results were proved for two-dimensional Maxwell’s equations by Lin [6,8] and
Brandts [7].

However, there are still some defects in the work mentioned above. On the
one hand, all of previous analysis only concentrated on conforming finite elements,
for examples, ECHL element, MECHL element, Nédélec’s element [1] and so on.
Whether those results hold for nonconforming ones or not is still an open problem.
On the other hand, to our best knowledge, almost all the convergence analysis in the
literature on this aspect are based on the classical regularity assumption or quasi-
uniform assumption on the meshes [9], i.e., hK

ρK
≤ C or h

hmin
≤ C, ∀K ∈ Th, where

Th is a family of meshes of Ω, hK and ρK are the diameter of K and the biggest
circle contained in the element K, respectively, h = max

K∈Th

hK , hmin = min
K∈Th

hK and

C is a positive constant which is independent of hK and the function considered.
However, in many cases, the above regular assumptions on meshes are great deficient
in applications of finite element methods. For example, the solutions of some elliptic
problems may have anisotropic behavior in parts of the defined domain. This
means that the solution only varies significantly in certain directions. It is an
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obvious idea to reflect this anisotropy in the discretion by using anisotropic meshes
with a finer mesh size in the direction of the rapid variation of the solution and
a coarser mesh size in the perpendicular direction. Besides, some problems may
be defined in narrow domain, for example, in modeling a gap between rotor and
stator in an electrical machine, if we employ the regular partition of the domain,
the cost of calculation will be very high. Therefore, to employ anisotropic meshes
with fewer degrees of freedom is a better choice to overcome these difficulties.
However, anisotropic elements K are characterized by hK

ρK
→ ∞, where the limit

can be considered as h →∞. In this case, the Bramble-Hilbert Lemma can not be
used directly in the estimate of the interpolation error, and the consistency error
estimate. The key of the nonconforming finite element analysis, will become very
difficult to be dealt with, because there will appear a factor |F |

|K| which tends to ∞
when the estimate is made on the longer sides F of the element K, which means that
the traditional finite element analysis techniques are no longer valid. Zenisek [10,11]
and Apel [12,13] published a series of papers concentrating on the interpolation
error estimates of some Lagrange type conforming elements, and [13] represented
an anisotropic interpolation theorem, but it is very difficult to be verified for some
elements. Chen and Shi [14] generalized Apel’s results and studied many problems,
including anisotropic nonconforming elements, and obtained a lot of valuable results
[14-19]. Although anisotropic finite element methods have such obvious advantages
over conventional ones, it seems that there are few studies focusing on Maxwell’s
equations of the finite element formulations, especially the nonconforming ones.

In this paper, we will apply three Crouzeix-Raviart type nonconforming finite
elements (one is the so-called five-node nonconforming element[15,20], another is
similar to the so-called P1 nonconforming finite element discussed in [21] and the
last one is a new element constructed in this paper) to Maxwell’s equations on a
mixed finite element scheme and a finite element scheme, respectively. The plan
of this paper as follows: in section 2, we will give the constructions of the three
Crouzeix-Raviart type nonconforming finite elements, analyze the mixed finite el-
ement scheme and the finite element scheme for the time-dependent Maxwell’s
system in two dimensions and prove some important Lemmas. In section 3, the
so-called five-node nonconforming element is applied to Maxwell’s equations on the
finite element scheme, meanwhile, the other two elements are applied to approx-
imating Maxwell’s equations on the mixed finite element scheme and the finite
element scheme, respectively. Based on some novel approaches and elements’ prop-
erties, the convergence analysis and error estimates are obtained for two elements
under anisotropic meshes and the other one with regular meshes, respectively.

2. Constructions of nonconforming finite element schemes

Let K̂ = [−1, 1]×[−1, 1] be the reference element on ξ−η plane, the four vertices
of K̂ are d̂1 = (−1,−1), d̂2 = (1,−1), d̂3 = (1, 1) and d̂4 = (−1, 1), the four edges
of K̂ are l̂1 = d̂1d̂2, l̂2 = d̂2d̂3, l̂3 = d̂3d̂4 and l̂4 = d̂4d̂1.
The shape function spaces and the interpolation operators of the finite elements on
K̂ are defined by
(2.1)

P̂ 1 = span{1, ξ, η, ϕ(ξ), ϕ(η)}, 1
|K̂|

∫

K̂

(v̂ − Î1v̂)dξdη = 0,
1

|l̂k|

∫

l̂k

(v̂ − Î1v̂)dŝ = 0,

(2.2) P̂ 2 = span{1, ξ, η}, 1

|l̂k|

∫

l̂k

Î2v̂dŝ =
1
2
(v̂(d̂k) + v̂(d̂k+1)),


