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Abstract. In this article, we are interested in the mathematical modeling of

singular electromagnetic fields, in a non-convex polyhedral domain. We first

describe the local trace (i. e. defined on a face) of the normal derivative of an

L2 function, with L2 Laplacian. Among other things, this allows us to describe

dual singularities of the Laplace problem with homogeneous Neumann bound-

ary condition. We then provide generalized integration by parts formulae for

the Laplace, divergence and curl operators. With the help of these results, one

can split electromagnetic fields into regular and singular parts, which are then

characterized. We also study the particular case of divergence-free and curl-

free fields, and provide non-orthogonal decompositions that are numerically

computable.
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Introduction

When one solves boundary value problems in a bounded polyhedron Ω of R3

with a Lipschitz boundary, it is well-known that the presence of reentrant corners
and/or edges on the boundary deteriorates the smoothness of the solution [30, 28].
This problem is all the more relevant since boundary value problems which arise in
practice, are often posed in domains with a simple but non smooth geometry, such
as three-dimensional polyhedra.

More specifically, consider Maxwell’s equations with perfect conductor bound-
ary conditions and right-hand sides in L2(Ω). Then the electromagnetic field (E ,H)
always belongs to H1(Ω)6 when Ω is convex1. On the other hand, it is only guaran-
teed that it belongs to Hσ(Ω)6, for any σ < σmax, with σmax ∈]1/2, 1[, when Ω is
non-convex (see for instance [24]). In the latter case, strong electromagnetic fields
can occur, near the reentrant corners and/or edges. For practical applications, we
refer for instance to [31]. Nevertheless, one can split (cf. [7]) the field into two
parts: a regular one, which belongs to H1(Ω)6, and a singular one. According to
[28, 7, 12, 24], the subspace of regular fields is closed, so one can choose to define
the singular fields by orthogonality. Other approaches are possible and useful, see
[23].

In the same way, when solving a problem involving the Laplace operator with
data in L2(Ω), the solution is in H2(Ω) when Ω is either a convex polyhedron or
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1As proven in [28, p. 12], if Ω is convex, then its boundary is automatically Lipschitz.
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a bounded domain with a smooth boundary. However, it is only guaranteed to
be in H1+s(Ω) for s < smax, when Ω is a non-convex polyhedron (one can prove
that smax = σmax, see Section 3). Grisvard showed in [28] that a solution of the
Laplace operator can be decomposed into the sum of a regular part and a singular
part, the latter being called a primal singularity. This decomposition is based on
a decomposition of L2(Ω) into the sum of the image space of the regular parts and
its orthogonal (the latter is the space of dual singularities).

As it is well known, the singular part of the electromagnetic field is linked [7, 8,
10] to the primal singularities of the Laplace problem, respectively with

• homogeneous Dirichlet boundary condition for the electric field E ;
• homogeneous Neumann boundary condition for the magnetic field H.

For a comprehensive theory on this topic, we refer the reader to the works of
Birman and Solomyak [7, 8, 9, 10, 11]. Among other results, they proved a split-
ting of the space of electromagnetic fields into a two-term simple sum. First, the
subspace of regular fields. Second, the subspace made of gradients of solutions to
the Laplace problem.

During the 1990s, Costabel and Dauge [25, 19, 20, 22, 23] provided new insight
into the characterizations of the singularities of the electromagnetic fields, called
afterwards electromagnetic singularities. In the process, they proved very useful
density results.

In [2], we first studied, for L2 functions with L2 Laplacians, a possible definition
of the trace on the boundary. Actually, it was proven that it can be understood
locally – face by face – with values in H−1/2-like Sobolev spaces. This being clar-
ified, we inferred a generalized integration by parts (gibp) formula. Finally, in [4],
we were able to describe precisely the space of all divergence-free singular electric
fields. Indeed, starting from the orthogonality relationship with regular fields, the
gibp formula allowed us to build a suitable characterization. In the present article,
we would like to extend the results first to the case of magnetic fields and second
to the case of any electric field, by using the same three step procedure.

The article is organized as follows. We first introduce some notations and define
the Sobolev spaces that we will use throughout this paper. In the following Section,
we recall some definitions on local traces together with the resulting gibp formula
for the Laplace problem with Dirichlet boundary condition. These results are then
extended to the Laplace operator with Neumann boundary condition. In Section
3, we transpose (part of) these results to the electromagnetic fields, from which,
in Section 4, we can prove characterizations of the singular electromagnetic fields.
Section 5 is devoted to the study of the divergence-free case. Then, in Section 6,
we relate the regular/singular fields to the vector and scalar potentials. We also
give their characterizations, using for this ad hoc isomorphisms. Finally, in the last
Section, we consider curl-free spaces, that allow us to define non-orthogonal but
numerically useful decompositions of the electromagnetic fields.

1. Notations and functional spaces

Let Ω be a bounded open set of R3, with a Lipschitz polyhedral boundary ∂Ω.
For simplicity reasons (cf. Remark 3.1), we assume that Ω is simply connected and
that ∂Ω is connected. The unit outward normal to ∂Ω is denoted by n. We call


