
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 4, Pages 570–589

A LOCAL COMPUTATIONAL SCHEME FOR HIGHER ORDER

FINITE ELEMENT EIGENVALUE APPROXIMATIONS

XIAOYING DAI, LIHUA SHEN, AND AIHUI ZHOU

Abstract. Based on some coupled discretizations, a local computational scheme

is proposed and analyzed in this paper for a class of higher order finite element

eigenvalue approximations. Its efficiency is proven by theoretical and numerical

evidences. It is shown that the solution of an eigenvalue problem in a higher

order finite element space may be reduced to the solution of an eigenvalue

problem in a lower order finite element space, and the solutions of some linear

algebraic systems in the higher order finite element space by some local and

parallel procedure.
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1. Introduction

Motivated by efficient eigenvalue computations in quantum chemistry, in this
paper, a local computation scheme is proposed and analyzed for a class of higher
order finite element eigenvalue approximations. With this new proposed scheme,
solving an elliptic eigenvalue problem will not be much more difficult than the local
solutions of some standard elliptic boundary value problem. Our scheme is an
iterative approach, which is related to that in [18, 19]. The scheme in this paper,
however, is based on global and local coupled discretizations.

It is well known that efficient electronic structure computations are usually de-
sired in quantum chemistry and nano-materials computations. In modern electronic
structure computations, the so-called density functional theory is fundamental, with
which Kohn-Sham equations need to be solved [7, 15, 16, 17, 21]. Note that Kohn-
Sham equations are nonlinear eigenvalue systems in three dimensions, the matrices
resulting from both real space and reciprocal space techniques are large, and the
number of eigenvalues and eigenvectors required is proportional to the number of
atoms in the molecular system. Hence, an iteration procedure of solving a large
number of eigenvalues of large scale linear systems must be involved. Moreover, in
order to obtain the numerical solution with satisfactory accuracy, the number of
iterations are usually very large, too. In a word, efficient electronic structure com-
putations require large scale eigenvalue computing [7, 11, 16, 17, 22, 26, 29, 30].
Therefore, it is significant to improve the approximation accuracy or reduce the
computational cost in solving such linear eigenvalue problems (in three dimensions)
at each iteration step.

As the finite element method is one of most effective numerical methods, we
shall consider to use the finite element scheme to discretize eigenvalue problems.
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Although the finite element method is capable of providing accurate solutions to
both all-electron [27] and pseudopotential [6, 23] formulations of Kohn-Sham equa-
tions, its application to all-electron problems in molecules and solids has so far
been limited by the large number of basis functions required to adequately describe
all-electron solutions near nuclei, where the solutions can have cusps and oscillate
rapidly [7, 22, 31, 34]. To make the finite element method to be competitive with
conventional methods in the all-electron context, specialize basis functions, such as
isolated atomic solutions or Gaussian functions, will likely need to be added to the
standard finite element basis to increase the efficiency of the representation. In the
context of pseudopotentional setting, however, the original Kohn-Sham equations
become smooth and their solutions are much smoother and simpler [6, 7, 22, 23, 27].
Thus the finite element method with piecewise polynomial bases is immediately ap-
plicable. Since higher order finite elements are usually recommended when the data
is smooth, it is very natural to apply a higher order finite element method to the
pseudopotential formulation of Kohn-Sham equations. Indeed, the higher order
finite element approach has been proved to be accurate and efficient in modern
electronic structure computations (see, e.g., [1, 7, 14, 30, 31, 32, 34]).

The computational complexity of higher order finite element discretizations, how-
ever, is larger than that of lower order finite element discretizations. To reduce the
complexity, in this paper, we will propose some new technique for fast higher order
finite element eigenvalue approximations. This technique is based on our under-
standing of local behaviors of finite elements solutions to some elliptic problems. By
using this technique, the computational complexity can be resolved through some
coupled discretizations that can be carried out in local. The main idea of our new
algorithm is to use a lower order finite element to approximate the low frequency of
the solution and then to use some linear algebraic systems to correct the residual
(which contains mostly high frequencies) in the higher order finite element space
by some local and parallel procedure.

The central computation in solving Kohn-Sham equations is the repeated solu-
tion of the following model eigenvalue problem, which is also called as a Schrödinger
equation, posed on a convex polygonal domain Ω ⊂ R

3:

{

−∆u + V u = λu in Ω,

u = 0 on ∂Ω,
(1.1)

where V is some potential function and is smooth in the pseudopotential setting.
Let us now use such a simple example to give a little more detailed but informal

description of the main idea and the main result in this paper. Let Sh,1
0 (Ω) and

Sh,2
0 (Ω), satisfying Sh,1

0 (Ω) ⊂ Sh,2
0 (Ω) ⊂ H1

0 (Ω), be the linear finite element space
and the quadratic finite element space associated with a finite element grid T h(Ω),
respectively. We may employ the following algorithm to discretize (1.1) to obtain
eigenvector approximations (on Ω0 ⊂ Ω locally) (see Section 3.1):

(1) Solve an eigenvalue problem in the linear finite element space: Find λh,1 ∈

R
1, uh,1 ∈ Sh,1

0 (Ω) such that ‖uh,1‖0,Ω = 1 and

∫

Ω

(∇uh,1 · ∇v + V uh,1v) = λh,1

∫

Ω

uh,1v ∀v ∈ Sh,1
0 (Ω).


