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THE HOLE-FILLING METHOD AND THE UNIFORM
MULTISCALE COMPUTATION OF THE ELASTIC

EQUATIONS IN PERFORATED DOMAINS

XIN WANG AND LI-QUN CAO

Abstract. In this paper, we discuss the boundary value problem for the linear

elastic equations in a perforated domain Ωε. We fill all holes with a very com-

pliant material, then we study the homogenization method and the multiscale

analysis for the associated multiphase problem in a domain Ω without holes.

We are interested in the asymptotic behavior of the solution for the multiphase

problem as the material properties of one weak phase go to zero, which has a

wide range of applications in shape optimization and in 3-D mesh generation.

The main contribution obtained in this paper is to give a full mathematical

justification for this limiting process in general senses. Finally, some numeri-

cal results are presented, which support strongly the theoretical results of this

paper.
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1. Introduction

In this paper, we consider the following boundary value problems of elastic equa-
tions in a perforated domain:
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) = fi(x), i = 1, 2, · · · , n, in Ωε

σε(uε) = 0, on Sε

uε(x) = g0(x), on Γ1

σε(uε) = g1(x), on Γ2

Following Oleinik’s notation (see [22]), let Q = {ξ : 0 < ξj < 1, j = 1, · · · , n} , and
ω be an unbounded domain of Rn which satisfies the following conditions:

(B1) ω is a smooth unbounded domain of Rn with a 1-periodic structure.
(B2) The cell of periodicity ω ∩Q is a domain with a Lipschitz boundary.
(B3) The set Q\ω̄ and the intersection of Q\ω̄ with the δ0−neighborhood (δ0 <

1
4 ) of ∂Q consist of a finite number of Lipschitz domains separated from each other
and from the edges of the cube Q by a positive distance.

Suppose that Ωε is a domain which has the form: Ω̄ε = Ω̄ε
0∪ (Ω̄\Ω0), where Ω is

a bounded Lipschitz convex domain of Rn without holes, Ω̄0 = ∪z∈Tεε(z + Q̄) ⊂ Ω,
Ω̄ε

0 = Ω̄0 ∩ εω̄ is shown in Fig.1(a), Tε is the subset of Zn consisting of all z such
that ε(z + Q) ⊂ Ω. The domain Ω1 = Ω\Ω̄0 denotes the boundary layer as shown
in Fig.1(b). The boundary ∂Ωε of a perforated domain Ωε is composed of ∂Ω and
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Figure 1. : (a) interior domain Ωε
0; (b) boundary layer.

the surfaces Sε of cavities, where ∂Ω = Γ̄1 ∪ Γ̄2,Γ1 ∩ Γ2 = ∅. Such a domain Ωε is
called as a type-II domain (see, [22]).

In equations (1), uε(x) = (uε
1(x), · · · , uε

n(x))T denotes a displacement function,
f(x) = (f1(x), · · · , fn(x))T is a body force, g0(x) is a given displacement function on
the Dirichlet boundary Γ1, g1(x) is a given surface stress on the Neumann boundary

Γ2, σε(uε) = (σε,1(uε), · · · , σε,n(uε)), σε,i(uε) ≡ νja
ε
ijhk

∂uε
h

∂xk
, i = 1, · · · , n, where

~n = (ν1, · · · , νn) is the unit outer normal vector to ∂Ωε = ∂Ω ∪ Sε.
Suppose that
(A1) Let ξ = ε−1x, and the elements of a matrix (aijkh(ξ)) are 1-periodic

functions in ξ.
(A2) aijkh(ξ) = ajikh(ξ) = akhij(ξ).
(A3) γ0ηijηij ≤ aijkh(ξ)ηijηkh ≤ γ1ηijηij , ξ ∈ ω, γ0, γ1 > 0, where (ηij) is any

real symmetric matrix.
(A4) aijkh ∈ L∞(ω), f ∈ L2(Ωε), g0 ∈ H

1
2 (Γ1), g1 ∈ L2(Γ2).

Remark 1.1. Existence and uniqueness of the solution to problem (1) can be
established on the basis of the assumptions (B1)− (B3), and (A1)− (A4) ( see, e.g.
[22]).

The numerous studies of homogenization and its applications for problem (1) in
perforated domains containing many small holes have been developed by so many
contributions that it is impossible to quote them all. We refer the interested reader
to these books and articles (see, e.g. [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 14, 16, 17, 18, 19,
20, 21, 22]).

When we solve the elastic equations with homogeneous Neumann boundary con-
ditions on the surfaces of holes in a perforated domain, we usually fill these holes
with an almost degenerated phase, which is also called the hole-filling method.
Actually, engineers often use the method to predict the effective properties of per-
forated materials. From a physical point of view, when the material properties of
the weak phase go to zero, this limit procedure is clear. But a full mathematical
justification has not been seen in all the available literature. In this paper, we try
to give a full mathematical justification for this limiting process in general cases.
Furthermore, in order to compute the displacement and the stress field in a do-
main, we present a uniform multiscale method for solving the elastic equations (1)
regardless of whether there are holes or not. The crucial step of the method is to
define the cell functions which are different from those of classical homogenization
method. On the other hand, from the viewpoint of numerical computation, the
mesh generation in a 3-D perforated domain is somehow more difficult than that


