
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 4, Pages 693–703

A NOTE ON THE APPROXIMATION PROPERTIES OF THE
LOCALLY DIVERGENCE-FREE FINITE ELEMENTS

JIANGGUO LIU AND RACHEL CALI

(Communicated by Peter Minev)

Abstract. This paper investigates construction and approximation properties

of the locally divergence-free (LDF) finite elements. Numerical stability of the

natural and normalized bases for the LDF elements is analyzed. Error estimates

about the jumps and the total divergence of the localized L2-projection are

proved and validated through numerical examples.
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1. Introduction

“Divergence-free” is an important physical property that appears in many appli-
cations, for example, incompressible fluid flows and solenoidal magnetic fields. The
divergence-free property should be preserved by numerical methods, globally or lo-
cally, in the classical or weak sense [7]. An early study on magnetohydrodynamics
(MHD) [4] has shown that numerical errors in the divergence of a magnetic field may
build up in time and bring up nonphysical phenomena in numerical simulations,
for instance, loss of momentum and energy conservation.

The locally divergence-free finite elements [1] have regained researchers’ inter-
ests in recent years. The LDF elements are devised to preserve the divergence-free
property locally or pointwise inside each element. These elements typically have
polynomial shape functions. When the LDF elements are glued together to form
an approximation subspace, continuity across element interfaces is usually lost.
Continuity can be enforced in the normal directions of element interfaces to con-
struct nonconforming LDF finite element approximation subspace. This approach
is adopted in [5] for solving the reduced time-harmonic Maxwell equations. Another
approach is to place the LDF finite elements in the framework of the discontinuous
Galerkin methods and weak discontinuity is then enforced by penalty factors. Ap-
plications along this line can be found in [1, 10, 11] for solving stationary Stokes and
Navier-Stokes problems, [8] for solving the Maxwell equations, and [13] for solving
the ideal MHD problem.

For implementations of the LDF finite elements, the natural basis functions
[1] are conceptually simple and appealing, but their divergence-free property is
not preserved by affine mappings. In this paper, we will show that the natural
basis functions are actually numerically unstable, so normalization on shape func-
tions should be adopted. When the LDF elements are used in the discontinuous
Galerkin framework, there are jumps across the element interfaces. In other words,
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the “total divergence” of a numerical solution might not be zero. The jumps or the
total divergence in LDF finite element approximations need to be measured. Espe-
cially, when the LDF elements are used with the characteristic methods [14], the
foot/head of a characteristic might fall right on the interface of two elements. The
localized L2-projection [3] could be used to approximate the initial solenoidal vec-
tor fields for time-dependent problems. How good could the localized L2-projection
be (regarding the jumps or the total divergence)? This paper addresses the above
issues. In Section 2, we show that the natural bases for the LDF elements are
numerically unstable and propose some normalized bases for the LDF elements.
Section 3 discusses the approximation properties of the LDF elements with a focus
on the localized L2-projection. The theoretical error estimates are illustrated and
validated in Section 4 through a very smooth vector field and a nonsmooth field.

Throughout the paper, we shall use A . B to represent an inequality A ≤ CB,
where C is a generic positive constant independent of the mesh size.

2. Natural and Normalized Bases for the LDF Elements

“Locally divergence-free” is actually a pointwise property, unrelated to the geo-
metric shapes of finite elements. It can be proved that for a two-dimensional vector
field v, it is divergence-free (divv = 0) if and only if there exists a scalar potential
function A(x, y) such that

v(x, y) = curlA =
(

∂A

∂y
,−∂A

∂x

)
.

Therefore, one can take the curl of the natural basis polynomials

1, x, y, x2, xy, y2, x3, x2y, xy2, y3, . . .

to get a natural basis for the LDF finite elements. Clearly, there are 2 zeroth-order
and 3 first-order basis functions:
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There are 4 second-order and 5 third-order basis functions:
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Three-dimensional natural bases for the LDF finite elements can be constructed
similarly [1].

Although theoretically these basis functions can be used for any elements, they
are numerically unstable. The mass/Gram matrix of these basis functions could
be very ill-conditioned. For example, suppose we have a uniform rectangular mesh
on the unit square [0, 1] × [0, 1] with a mesh size 0.01 in each direction. If we use
all these natural basis functions up to order 3 on the rectangle element [0, 0.01] ×
[0, 0.01], then the condition number of the mass matrix measured in 2-norm is as
high as 2.800 × 1015. This could result in unpredictable round-off errors that fail
the Cholesky factorization process in the localized L2-projection, to be discussed
later in Section 3.

Therefore, some sort of local basis functions are needed for different elements.
However, we may not use the affine mappings from generic elements to the reference


