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A PRE–PROCESSING MOVING MESH METHOD FOR
DISCONTINUOUS GALERKIN APPROXIMATIONS OF

ADVECTION–DIFFUSION–REACTION PROBLEMS

PAOLA F. ANTONIETTI AND PAUL HOUSTON

Abstract. We propose a pre–processing mesh re-distribution algorithm based

upon harmonic maps employed in conjunction with discontinuous Galerkin ap-

proximations of advection–diffusion–reaction problems. Extensive two–dimen-

sional numerical experiments with different choices of monitor functions, includ-

ing monitor functions derived from goal–oriented a posteriori error indicators

are presented. The examples presented clearly demonstrate the capabilities and

the benefits of combining our pre–processing mesh movement algorithm with

both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
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1. Introduction

The modeling of the interaction between advective and diffusive processes is
of fundamental importance in many areas of applied mathematics. Typically, in
applications, advection essentially dominates diffusion, which leads to a ‘nearly’
hyperbolic set of governing partial differential equations. Moreover, solutions to
these equations exhibit localized phenomena, such as propagating ‘near–shocks’
and sharp transition layers, and their numerical approximation presents a chal-
lenging computational task; indeed, it is well documented that many standard nu-
merical methods, developed for diffusion–dominated processes, often behave very
poorly when applied to these types of problems. Additionally, the presence of local
singularities in the solution may lead to a global deterioration of the numerical
approximation. Indeed, when uniform meshes are employed, the computational
cost to obtain accurate numerical solutions is typically very high, particularly for
three-dimensional problems. Therefore, the development of effective and robust
adaptive methods for these types of problems becomes a computational necessity.
The successful implementation of adaptive strategies, on the one hand, can increase
the accuracy of the numerical approximation and, on the other hand, decrease the
computational cost. The adaptive strategies developed within the context of finite
element methods, can be broadly classified as follows:
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h-method: This involves the automatic refinement or coarsening of the com-
putational mesh based on suitable a posteriori error estimates or error in-
dicators;

p-method: This involves the enrichment of the local (elemental) polynomial
degree;

hp-method: This combines both local h– and p–refinement based on a local
decision taken on each element of the computational mesh as to which
refinement strategy (i.e., h–refinement or p–refinement) should be employed
on the element in order to obtain the greatest reduction in the error per unit
cost. It exploits suitable control techniques which assess the local regularity
of the underlying analytical solution; for example, one may determine the
analyticity of a function by writing it in terms of a convergent Legendre
series expansion, and assessing the rate at which the Legendre coefficients
tend to zero, cf. [18, 8];

r-method (moving mesh method): This approach relocates (without affecting
the mesh topology) the grid points of a mesh, keeping the number of nodes
fixed, in such a way that the nodes become concentrated in regions of
the computational domain where the analytical solution undergoes rapid
variation.

On the one hand, considerable progress has been made on both the a posteriori
error analysis of finite element methods for a wide range of partial differential
equations of practical interest, and the development of reliable and robust auto-
matic h–, p– and hp–strategies (see, for example, [1, 4, 9, 25, 26, 28, 8], and the
references therein). On the other hand, the state of development of “optimal” mesh
modification strategies which are capable of delivering the greatest reduction in the
error for the least amount of computational cost, is far less advanced.

In recent years considerable work has been devoted to the development of r–
adaptive finite element algorithms, which, for a fixed polynomial order at least,
seek to re-distribute the nodes of a given mesh in an optimal fashion; see, for
example, [29, 23, 21, 23, 20, 19, 22], and the references cited therein. The moving
mesh method is very well suited for dynamical problems, and indeed problems with
moving boundaries, though such approaches may also be employed to optimize
a mesh for a stationary PDE by employing a nonlinear iteration similar to that
employed in h–adaptive methods. An r–refinement method usually contains two
key steps: a mesh selection algorithm and a solution algorithm. In some of the
existing r-methods, these two parts are strongly associated with each other, and
any change of the underlying partial differential equation will result in the rewriting
of large parts of the computational code. The success of a mesh adaptation strategy
using a variational approach hinges on choosing an appropriate monitor function
(cf. [6], for a study of this aspect of the adaptive mesh generation problem). For
example, for linear finite elements, the monitor function is often given in terms of
some first–/second–order derivatives of the computed solution.

One major drawback of r–refinement techniques is that they are often very ex-
pensive, particularly when the underlying mesh is extremely fine; in this case any
iterative approach employed to move the mesh may converge very slowly, if at all.
In this article, we aim exploit the numerous advantages of the original r-method
based on harmonic maps to develop an optimal pre–processing algorithm to be em-
ployed in conjunction with discontinuous Galerkin (DG, for short) approximations


