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CONSTRUCTION AND ANALYSIS OF WEIGHTED
SEQUENTIAL SPLITTING FDTD METHODS FOR THE 3D
MAXWELL’S EQUATIONS

VRUSHALI A. BOKIL AND PUTTHA SAKKAPLANGKUL

Abstract. In this paper, we present a one parameter family of fully discrete Weighted Sequential
Splitting (WSS)-finite difference time-domain (FDTD) methods for Maxwell’s equations in three
dimensions. In one time step, the Maxwell WSS-FDTD schemes consist of two substages each
involving the solution of several 1D discrete Maxwell systems. At the end of a time step we take
a weighted average of solutions of the substages with a weight parameter 6, 0 < 6 < 1. Similar
to the Yee-FDTD method, the Maxwell WSS-FDTD schemes stagger the electric and magnetic
fields in space in the discrete mesh. However, the Crank-Nicolson method is used for the time
discretization of all 1D Maxwell systems in our splitting schemes. We prove that for all values of 8,
the Maxwell WSS-FDTD schemes are unconditionally stable, and the order of accuracy is of first
order in time when 6 # 0.5, and of second order when 6 = 0.5. The Maxwell WSS-FDTD schemes
are of second order accuracy in space for all values of . We prove the convergence of the Maxwell
WSS-FDTD methods for all values of the weight parameter § and provide error estimates. We
also analyze the discrete divergence of solutions to the Maxwell WSS-FDTD schemes for all values
of 6 and prove that for 6 # 0.5 the discrete divergence of electric and magnetic field solutions is
approximated to first order, while for # = 0.5 we obtain a third order approximation to the exact
divergence. Numerical experiments and examples are given that illustrate our theoretical results.

Key words. Maxwell’s equations, Yee scheme, Crank-Nicolson method, operator splitting,
weighted sequential splitting.

1. Introduction

The electric and magnetic fields inside a material are governed by the macroscop-
ic Maxwell’s equations along with constitutive laws that account for the response
of the material to the incident electromagnetic (EM) field. The computational
simulation of electromagnetic interrogation problems, for the determination of the
dielectric properties of materials (such as permittivities and permeabilities), re-
quires the use of highly efficient forward simulations of the propagation of transient
electromagnetic waves in these media. Thus, a lot of research has concentrated on
the development of fully discrete forward solvers of Maxwell’s equations that are
accurate, consistent, stable, and computationally efficient.

The Yee scheme is a simple and efficient finite difference time domain (FDT-
D) method [28], and one of the most important numerical techniques for solving
Maxwell’s equations in the time domain. The Yee-FDTD method, first proposed
by Yee in 1966 [28], is an explicit scheme that employs staggered (uniform) grids in
both space and time for the electric and magnetic field components. On the stag-
gered grids, central difference approximations in space and time are constructed for
each component of the electric and magnetic fields in Maxwell’s equations which
gives second order accuracy in both space and time. The scheme is non-dissipative
for EM wave propagation in vacuum. The Yee scheme along with other discrete
methods have been extended to numerically solve Maxwell’s equations for EM wave
propagation in a variety of linear and nonlinear materials [1, 2, 3, 27], and applied
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to a wide variety of applications in nondestructive evaluation, optical simulations,
bioelectromagnetic simulations among others [11, 21, 25]. The Yee scheme has also
been extended to nonuniform meshes for EM propagation in a variety of materials
[15, 19, 20].

The most limiting aspect of the Yee scheme is the fact that the time step At and
the spatial step sizes Az, Ay and Az must satisfy a Courant-Friedrichs-Lewy (CFL)
stability condition [26, 27]. The conditionally stable Yee scheme has a stability
condition that is determined by the smallest cell size in the domain. For geometries
which include features that are smaller than the wavelengths of typical interrogating
pulses, fine scale spatial resolution is required to resolve small features. For example,
to study the effect of microwaves on brain cells, the size of geometrical features can
be five orders of magnitude smaller than a typical wave length [14]. In this case,
the conditionally stable Yee scheme requires a very small time step in the entire
domain to resolve the smallest spatial scales. Thus, the FDTD analysis of very
fine geometric structures via the Yee scheme can require a large number of time
iterations and long computation times.

The Crank-Nicolson (CN) FDTD method for the numerical simulation of the
time domain Maxwell’s equations is an implicit FDTD technique and is uncondi-
tionally stable [22, 23, 24]. Unconditionally stable schemes are well suited for prob-
lems involving geometries needing different details of discretization such as narrow
slots [13]. For geometries requiring fine scale spatial resolution, non-uniform mesh-
ing techniques can be created by using locally small spatial increments which do
not require extremely small time steps in the entire domain in an unconditionally
stable scheme [9]. The implicit nature of the CN-FDTD method allows the time
step to be chosen based on just accuracy requirements and not stability, and is thus
a well suited scheme for the simulation of EM wave propagation in geometries with
fine details. However, the CN method is computationally more intensive than the
Yee scheme as it requires the solution of a large linear (3D spatial) system at every
time step rather than a matrix vector multiplication as in the explicit Yee scheme
22, 23, 24].

The operator splitting method [10] is a powerful tool to solve multi-dimensional
and multi-physics problems. In this approach, we replace the original problem in-
volving a complicated operator into a sequence of sub-problems each involving a
single operator that models a single physical process. The sub-problems communi-
cate via their initial conditions and an approximation to the solution of the original
problem is obtained by combining the solutions of sub-problems. Operator splitting
methods are classified based on how the sequence of sub-problems are solved and
how these sub or intermediate solutions are combined to approximate the solution of
the original problem, which also determines the accuracy of the splitting technique.
The classical operator splittings, which include sequential splitting, the Strang-
Marchuk splitting, the alternating direction implicit (ADI-FDTD) scheme [13], a-
mong others, are popular splitting methods for solving complex time-dependent
problems. These splitting techniques can offer additional reductions in computa-
tional time over fully implicit methods like the CN scheme while preserving the
property of unconditional stability. By using the sequential and symmetrized split-
ting methods, Chen, Li, and Liang presented the energy-conserved splitting FDTD
methods for the free space Maxwell’s equations in two- [6] and three-dimensions [7].
The sequential splitting method gives low accuracy in time although its algorithm
has a simple structure. As shown in [6, 7], the order of accuracy of a sequential
splitting FDTD method for Maxwell’s equations is of the first order in time and



