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A GENERAL STRATEGY FOR NUMERICAL

APPROXIMATIONS OF NON-EQUILIBRIUM MODELS–PART I:

THERMODYNAMICAL SYSTEMS

JIA ZHAO, XIAOFENG YANG, YUEZHENG GONG, XUEPING ZHAO, XIAOGANG YANG,

JUN LI, AND QI WANG

Abstract. We present a general approach to deriving energy stable numerical approximations for
thermodynamical consistent models for nonequilibrium phenomena. The central idea behind the
systematic numerical approximation is the energy quadratization (EQ) strategy, where the sys-

tem’s free energy is transformed into a quadratic form by introducing new intermediate variables.
By applying the EQ strategy, one can develop linear, high order semi-discrete schemes in time
that preserve the energy dissipation property of the original thermodynamically consistent model
equations. The EQ method is developed for time discretization primarily. When coupled with an

appropriate spatial discretization, a fully discrete, high order, linear scheme can be developed to
warrant the energy dissipation property of the fully discrete scheme. A host of examples for phase
field models are presented to illustrate the effectiveness of the general strategy.

Key words. Energy stable schemes, nonequilibirum models, thermodynamic consistent models,

energy quadratization.

1. Introduction

Time-dependent dynamics or transient dynamics in nonequilibrium phenomena
is ubiquitous in science and engineering. One objective of scientific and engineering
research is to develop mathematical models to describe the complex dynamics for
various nonequilibrium systems. For material systems, especially, flowing materials,
the development of a viable models to describe nonequilibrium phenomena at a
given degree of freedoms is often not governed by a single physical equation unlike
the Maxwell equation in the electromagnetic theory or the Schrodinger equation
in quantum mechanics. Namely, universally accepted physical laws do not exist in
many material systems once the choice of the variables, time and length scales is
made. The Onsager principle has been proven to be an effective tool for one to arrive
at a reasonable theory for describing near nonequilibrium dynamics [34, 35, 57, 66,
67, 26]. The Onsager principle is consisted of the linear response theory for kinetics
and appropriate choices for describing reversible and irreversible dynamics within
the regime of the time and length scale selected. It is equivalent to the GENERIC or
the Poisson bracket formalism for non-equilibrium phenomena [2, 36], the energetic
variational principle coupled with the minimum dissipation principle [13, 46, 25],
and the second law of thermodynamics. But, the Onsager principle is easier to use
in practice.

In a nutshell, the Onsager principle [34, 35] simply states that for a matter
system, after one has identified the generalized coordinate, flux, and forces, there
exists a balance between the frictional force and the totality of the other forces.
It provides a specific way to calculate the frictional and the other forces. The
Onsager principle was proposed for dissipative systems. It can be extended to yield
a generalized Onsager principle to include reversible processes corresponding to
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transport phenomena. A large majority of the thermodynamic and hydrodynamic
models, if they are derived correctly, obey the generalized Onsager principle in that
the models possess a variational structure and admit energy dissipation laws.

Now that many models can be derived using the generalized Onsager principle,
can we develop a systematic approach to fully utilize the variational as well as
the dissipative structure in the models? The answer is positive. This paper aims
at developing such a systematic approach to obtaining a second order temporal
discretization for the thermodynamic model equations. This can form a paradigm
for the future development of effective numerical approximations to models that
describe non-equilibrium phenomena, enabling one to focus on more fine details or
higher order approximations as well as implementation efficiency.

For a given non-equilibrium model consisted of partial differential equations, a
high order approximation, computational efficiency as well as property preserving
at the discrete level are always the desired properties to attain. For the dissipative
system, one of the properties, one would like to preserve firstly, is the positive
entropy production rate, or equivalently the second law of thermodynamics. In
the isothermal case, it implies energy dissipation, commonly known as the energy
law. The type of numerical schemes that retains the energy dissipate property
at the discrete level is called the energy stable scheme. When the energy stability
property of the scheme is independent of the discrete step size, the scheme is termed
unconditionally energy stable. For these schemes, a large step size can be chosen
to compute numerical solutions of the model equations.

In the past, two distinct, broadly-used strategies for developing energy stable
schemes were proposed, which are the convex splitting approach [17, 53, 39, 52, 24]
and the stabilizing approach [32, 69, 73, 31, 42, 45, 44, 70, 74, 54, 7, 68, 43]. The
convex-splitting strategy relies on the existence of a pair of convex components that
give rise to the free energy as the difference of the two functions. If such a splitting
exists, a nonlinear scheme can be devised to render an unconditionally energy stable
scheme. The stabilizing approach augments discretized equations by high order
terms to turn the scheme into an energy stable scheme. Usually, this is accomplished
by adding additional dissipation to the numerical scheme. Both strategies can yield
dissipative schemes but do not guarantee to preserve the dissipation rate. Recently,
Badia, Guillen-Gonzales, Gutierres-Santacreu and Tierra explored a new idea of
transforming the free energy into a quadratic functional to derive energy stable
schemes [1, 23]. Recently, it is amplified and systematically applied to many specific
thermodynamic models by Yang, Zhao, Shen and Wang [58, 61, 8, 62, 56, 60, 65,
70, 64, 71, 72, 21, 22]. Yang, Zhao and Wang coined the name Invariant Energy
Quadratization (IEQ) method for this class of methods. Later, we abbreviated the
name to simply Energy Quadratization (EQ) method, which is more appropriate.
This strategy bypasses the traditional complicated ones to arrive at semi-discrete,
second order or higher order in time linear schemes readily. This strategy is so
general that it has little restriction on the specific expression of the free energy.

In this paper, we summarize the works that we have done using the EQ strategy
and present a general framework to discretize the thermodynamically consistent
models in forms of partial differential equations to arrive at linear, second order,
energy stable numerical schemes. Implied by the name of EQ, one introduces
new intermediate variables to quadratize the free energy of the model. Then, one
reformulates the thermodynamic model in the new variables. In all cases, the second
order in time, numerical scheme based on the linearized, implicit Crank-Nicolson
method can be applied to the models to arrive at energy stable schemes. The
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thermodynamically consistent models include a wide class of PDE-based models
that have intrinsic energy dissipation laws. The Cahn-Hilliard type equation and
Allen-Cahn type equation are two prominent examples. The resultant schemes are
always linear, second order in time, and unconditionally energy stable, so that they
are supposed to be solved more efficiently than the discrete equations resulting from
nonlinear schemes. These desired attributes of the schemes make the numerical
approximation especially appealing.

We organize the rest of the paper as follows. In section 2, we present some
useful lemmas and introduce basic notations. In section 3, we present the deriva-
tion of a general thermodynamic model using the generalized Onsager principle; it
is followed by a systematic numerical approximation exploiting the mathematical
structure in the model equations. In section 4, we present a plethora of phase field
models consistent with the thermodynamic derivation and discuss their numerical
approximations using EQ methods. Finally, we give a concluding remark in the
last section.

2. Notations

In this section, we define the necessary notations to be used later in the paper.
Denote Z+ the set of all the positive integers, Z the set of all the non-negative
integers, R the set of all the real number, R+ the set of all the positive real number
and R+

0 the set of all the non-negative real numbers.
We consider a time domain given by [0, T ] for T ∈ R+. For a Nt ∈ Z+, we define

the time step as ∆t = T/Nt, and the n-th step tn = n∆t, 0 ≤ n ≤ Nt. Consider
a spatial domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω. We denote the
computational domain by Ωt = Ω × (0, T ). For simplicity, we assume periodic
boundary conditions for all models to be discussed in this paper unless stated
otherwise. For physical boundary conditions, a consistent spatial discretization
will also give us the desired results. We use normal symbols (such as ϕ, ψ, c) to
represent scalar variables, bold-faced symbols (such as v,p,h,g) to represent vector
variables, and bold-faced capital symbols (such as F,G,M) to represent second
order tensors or matrix variables.

We define the following difference operators

(1) δ+t f
n =

1

∆t
(fn+1 − fn), δtf

n+1 =
1

2∆t
(3fn+1 − 4fn + fn−1),

and the extrapolation operators by overbars

(2) f
n+1

= 2fn − fn−1, f
n+ 1

2 =
3

2
fn − 1

2
fn−1.

We define inner product of two functions f, g ∈ L2(Ω) as follows (f, g) =
∫
Ω
fgdx,

and L2 norm by ∥f∥ = (f, f)
1
2 . In a similar manner, for f ,g ∈ (L2(Ω))d, we define

the inner product (·, ·) and norm ∥ · ∥ for vector functions

(3) (f ,g) =
∑
i

(fi,gi), ∥f∥ = (f , f)
1
2 .

Analogously, we define the inner product and norm for tensor functions

(4) (F,G) =
∑
i,j

(Fi,j ,Gi,j), ∥F∥ = (F,F)
1
2 .

For any matrix M ∈ Rn×n, we denote M ≤ 0 as M is negative semi-definite,
and M ≥ 0 as M is positive semi-definite. For any operator M ∈ B(H), where H
is a Hilbert space, say H = L2(Ω), we denote M ≤ 0 as M is negative semi-definite
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operator, i.e. ∀f ∈ H, (Mf, f) ≤ 0. Similarly, we denote M ≥ 0 as M is positive
semi-definite operator, i.e. ∀f ∈ H, (Mf, f) ≥ 0.

3. Model Derivation Using the Generalized Onsager Principle

3.1. Model derivation for dissipative thermodynamic systems. We con-
sider a thermodynamic system whose state is described by a set of thermodynamic
variables given in a vector Φ. We assume the system’s free energy is given by

(5) F =
(
f(Φ,∇Φ, · · · ,∇mΦ), 1

)
,

with m ∈ Z+. Assuming the system is dissipative, the transport equation of the
variable Φ can be derived systematically.

We begin with a dynamical system for the time evolution of Φ:

(6) ∂tΦ = s(Φ, · · · ,∇2mΦ),

where s is a vector functional to be determined below. We calculate the time
derivative of the free energy as follows

(7)

d
dtF =

(
δ
δΦF (Φ,∇Φ, · · · ,∇mΦ), ∂tΦ

)
=

( m∑
i=0

(−1)i∇i ∂f
∂∇iΦ , s

)
+
∫
∂Ω
dS
[m−1∑
i=0

(
m∑

k=i+1

n · (−1)k−i−1∇k−i−1 ∂f
∂∇kΦ

)∇i∂tΦ
]
,

where n is the unit external normal of ∂Ω. If the boundary integral does not con-
tribute to the energy dissipation, the boundary integral should vanish. Otherwise,
it must be taken into account. Here, we assume the boundary conditions are cho-
sen in such a way that the boundary integrals resulted during the integration by
parts process all vanish, which yield m boundary conditions. One set of sufficient
boundary conditions is given by

(8)
m∑

k=i+1

n · (−1)k−i−1∇k−i−1 ∂f

∂∇kΦ
= 0, i = 0, · · · ,m− 1.

We note that the periodic boundary condition also makes the boundary integral
vanish. There can be other possibilities, which we will not enumerate here. These
boundary conditions will be part of the boundary conditions for Φ in (6). Addi-
tional boundary conditions may be necessary depending on the form of the mobility
matrix, which will be introduced below.

We choose s as a linearly functional of the chemical potential µ using the Gen-
eralized Onsager Principle [67]

(9) s = M· µ,

where M is called the mobility matrix or coefficient matrix with elements including
possibly differential or integral operator. This dynamical system is known as a
gradient system. We decompose M into the symmetric (Ms) and antisymmetric
part (Ma)

(10) M = Ms +Ma.

Then, the energy dissipation rate is given by

(11)
dF

dt
=
(
µ,Ms · µ

)
.
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The time-dependent transport equation system is dissipative if Ms ≤ 0 while the
energy is conserved if Ms = 0.

For example, if

(12) Ms =
N ′∑
i=0

(−1)i+1∇i ·Mi · ∇i,

where Mi, i = 0, · · · , N ′ (with N ′ ∈ Z+) are non-negative definite tensors, the
thermodynamic system is dissipative. This includes the well-known Allen-Cahn
and Cahn-Hilliard equations for multiphasic materials systems [4, 5]. For a mo-
bility matrix containing differential operators, additional boundary conditions are
necessary. These boundary conditions must be introduced based on whether the
boundary terms in the energy dissipation rate formula contribute to the energy dis-
sipation or not. For instance, for the mobility given in (12), N ′ boundary conditions
need to be supplied. These conditions are defined based on the integration by parts
during the reduction process to show the energy is dissipative. We will remark
on this point wherever we give examples in the following. So, the total number
of boundary conditions is m + N ′. Again, the periodic boundary condition is an
alternative boundary condition that makes all boundary/surface integrals vanish
during the integration by parts process.

We use the fairly general case (12) to illustrate the idea. The transport equation
for dynamics of the system is given by

(13)
∂Φ

∂t
= [

N ′∑
i=0

(−1)i+1∇i ·Mi · ∇i +Ma]µ,

with the consistent boundary condition discussed above, and proper initial condi-
tions.

The system is dissipative if Ms ≤ 0 and the energy dissipation rate is given by

(14)
d

dt
F = −

N ′∑
i=0

(
∇iµ,Mi · ∇iµ

)
≤ 0.

3.2. Model reformulation based on energy quadratization method. We
next propose a systematic way to develop semi-discrete numerical schemes which
are unconditionally energy stable and linear. The strategy we utilize is called the
energy quadratization (EQ) method. We illustrate the idea using the specific form
of Ms given in (12). For more exotic mobility matrices, analogous results can be
obtained on a case-by-case basis.

For any viable thermodynamic model, the free energy is normally bounded below.
Without loss of generality, we assume the free energy is bounded below in this
paper. If the free energy density functional has a lower bound, one can always add
a constant A to it making it positive, without affecting the underlying dynamics.
Then the modified free energy can be rewritten into a quadratic form

(15) F =
m∑
i=0

1

2
βi∥∇iΦ∥2 +

N∑
i,j=1

αij(qi, qj),

where βi are non-negative numbers, N ∈ Z, (αij)N×N > 0, and qi’s are scalar
functions of (Φ,∇Φ, · · · ,∇mΦ). This process is called energy quadratization (EQ).
In principle, any potential functional with lower bound can be rewritten into such
a quadratic form. However, the representation is not unique. We will give more
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detailed discussions on how to reformulate the potential functional into quadratic
forms, and comparing different quadratization approaches in the next section.

Once we reformulate the free energy functional into quadratic forms (15), the
generalized chemical potential vector can be rewritten into the following
(16)

µ =
m∑
i=0

(−1)iβi∆
iϕ+

N∑
ij=1

αij
δ
δΦ (qiqj)

=
m∑
i=0

(−1)iβi∆
iϕ+

N∑
ij=1

αij

[
qi
∂qj
∂Φ + qj

∂qi
∂Φ −∇ · (qi ∂qj∂∇Φ )−∇ · (qj ∂qi

∂∇Φ )

+∇∇ : (qi
∂qj

∂∇∇Φ ) +∇∇ : (qj
∂qi

∂∇∇Φ ) + · · ·
]
,

and the time evolutionary equation of the intermediate variables are given by

(17)
∂qj
∂t

=
∂qj
∂Φ

∂Φ

∂t
+

∂qj
∂∇Φ

: ∇∂Φ

∂t
+

∂qj
∂∇∇Φ

...∇∇∂Φ

∂t
+ · · · .

Then, we obtain the equivalent form of the equations given in (13)
(18)

∂Φ
∂t = [

N ′∑
i=0

(−1)i+1∇i ·Mi · ∇i +Ma]µ,

µ =
m∑
i=0

(−1)iβi∆
iϕ+

N∑
ij=1

αij [qi
∂qj
∂Φ + qj

∂qi
∂Φ −∇ · (qi ∂qj∂∇Φ )−∇ · (qj ∂qi

∂∇Φ )

+∇∇ : (qi
∂qj

∂∇∇Φ ) +∇∇ : (qj
∂qi

∂∇∇Φ ) + · · · ],
∂qj
∂t =

∂qj
∂Φ

∂Φ
∂t +

∂qj
∂∇Φ : ∇∂Φ

∂t +
∂qj

∂∇∇Φ

...∇∇∂Φ
∂t + · · · .

We remark the choice of consistent initial conditions for qi (1 ≤ i ≤ N) are essential
to keep the reformulation equivalent. More details will be provided in the examples
in the following section. The equivalence between the reformulated model given in
(18) and the original one (13) could be easily verified, as qi are only intermediate
variables, and nothing else have been changed.

Next, we will show that the reformulated model given in (18) share the same
energy dissipation rate as the original one in (13). In fact,

(19)

dF
dt =

m∑
i=0

βi

(
∇iΦ,∇i ∂Φ

∂t

)
+

N∑
i,j=1

αij
[
(qi,

∂qj
∂t ) + (∂qi∂t , qj)

]
=

m∑
i=0

(−1)iβi

(
∆iΦ, ∂Φ∂t

)
+

N∑
i,j=1

αij

(
qi
∂qj
∂Φ + qj

∂qi
∂Φ −∇ · (qi ∂qj∂∇Φ )

−∇ · (qj ∂qi
∂∇Φ ) +∇∇ : (qi

∂qj
∂∇∇Φ ) +∇∇ : (qj

∂qi
∂∇∇Φ ) + · · · , ∂Φ∂t

)
+boundary terms

=
(
µ, ∂∂tΦ

)
=

(
µ, [

N ′∑
i=0

(−1)i+1∇i ·Mi · ∇i +Ma] · µ
)

= −
N ′∑
i=0

(
∇iµ,Mi · ∇iµ

)
+ boundary terms.

We adopt the boundary conditions obtained in the derivation of the transport
equation of Φ at ∂Ω so that the boundary integrals vanish. Thus (19) is equivalent
with (14).
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This procedure for obtaining the energy dissipation equation serves as the foun-
dation for deriving the energy stable numerical schemes for the system. In the
following, we focus on dissipative thermodynamic systems.

4. Energy Stable Numerical Approximations

4.1. Time discretization using the energy quadratization method. The
energy quadratization method (EQM) provides a systematic way to linearize the
governing system of equations when deriving numerical schemes. Using EQM, we
discretize the system of equations (18) in time as follows

Scheme 4.1. (Second Order, Linear Crank-Nicolson Scheme). Given initial con-
ditions Φ0, q0i , we first compute Φ1, q1i by a first order scheme. Having computed
Φn−1, qn−1

i , and Φn, qni , we compute Φn+1, qn+1
i as follows:

(20)

δ+t Φ
n =

[ N ′∑
i=0

(−1)i+1∇i ·Mn+ 1
2

i · ∇i +Mn+ 1
2

a

]
µn+

1
2 ,

µn+
1
2 =

m∑
i=0

(−1)iβi∆
iΦn+

1
2 +

N∑
i,j=1

αij [q
n+ 1

2
i

∂qj
∂Φ

n+ 1
2

+ q
n+ 1

2
j

∂qi
∂Φ

n+ 1
2

−∇ · (qn+
1
2

i
∂qj
∂∇Φ

n+ 1
2

)−∇ · (qn+
1
2

j
∂qi
∂∇Φ

n+ 1
2

)

+∇∇ : (q
n+ 1

2
i

∂qj
∂∇∇Φ

n+ 1
2

) +∇∇ : (q
n+ 1

2
j

∂qi
∂∇∇Φ

n+ 1
2

) + · · · ],

δ+t q
n
i = ∂qi

∂Φ

n+ 1
2 · δ+t Φn + ∂qi

∂∇Φ

n+ 1
2

: ∇δ+t Φn + ∂qi
∂∇∇Φ

n+ 1
2 ...∇∇δ+t Φn + · · · .

Remark 4.1. We note that the initial conditions of qi, i = 1, · · · , N are determined
by the initial conditions of Φ via the definition of the qi.

For the scheme, we have the following theorem.

Theorem 4.1. Scheme 4.1 is unconditionally energy stable, in the sense that

(21) Fn+1 − Fn = −∆t

N ′∑
i=0

(
∇iµn+

1
2 ,M

n+ 1
2

i · ∇iµn+
1
2

)
,

where F k =
∑m
i=0

1
2βi∥∇

iΦk∥2 +
∑N
i,j=1 αij(q

k
i , q

k
j ), k ∈ N, is the semi-discretized

free energy. In particular, the numerical scheme is energy decay, i.e. Fn+1 ≤ Fn,
provided Mi ≥ 0.

Proof. Using the integration-by-parts formula, we deduce

(22)
m∑
i=0

βi(∇iΦn+
1
2 ,∇iδ+t Φ

n) =
m∑
i=0

(−1)iβi(∆
iΦn+

1
2 , δ+t Φ

n).

Similarly, we have from the third equation of (20)

(23)

N∑
i,j=1

αij [(q
n+ 1

2
i , δ+t q

n
j ) + (δ+t q

n
i , q

n+ 1
2

j )]

=
N∑

i,j=1

αij

(
q
n+ 1

2
i

∂qj
∂Φ

n+ 1
2

+ q
n+ 1

2
j

∂qi
∂Φ

n+ 1
2 −∇ · (qn+

1
2

i
∂qj
∂∇Φ

n+ 1
2

)

−∇ · (qn+
1
2

j
∂qi
∂∇Φ

n+ 1
2

) +∇∇ : (q
n+ 1

2
i

∂qj
∂∇∇Φ

n+ 1
2

)

+∇∇ : (q
n+ 1

2
j

∂qi
∂∇∇Φ

n+ 1
2

) + · · · , δ+t Φn
)
.
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Adding (22) and (23) and using the second equation of (20), we obtain
(24)
m∑
i=0

βi(∇iΦn+
1
2 ,∇iδ+t Φ

n)+

N∑
i,j=1

αij [(q
n+ 1

2
i , δ+t q

n
j )+(δ+t q

n
i , q

n+ 1
2

j )] =
(
µn+

1
2 , δ+t Φ

n
)
.

Then we take the inner product of the first equation of (20) with µn+
1
2 , and then

perform integration-by-parts to arrive at

(
µn+

1
2 , δ+t Φ

n
)

= −
N ′∑
i=0

(
∇iµn+

1
2 ,M

n+ 1
2

i · ∇iµn+
1
2

)
,(25)

where the boundary conditions used in deriving the equations are adopted. Ac-
cording to (24), (25) and the following identity

δ+t (u
n · vn) = δ+t u

n · vn+ 1
2 + un+

1
2 · δ+t vn,

we have
(26)

δ+t F
n =

m∑
i=0

βi(∇iΦn+
1
2 ,∇iδ+t Φ

n) +
N∑

i,j=1

αij [(q
n+ 1

2
i , δ+t q

n
j ) + (δ+t q

n
i , q

n+ 1
2

j )]

=
(
µn+

1
2 , δ+t Φ

n
)
= −

N ′∑
i=0

(
∇iµn+

1
2 ,M

n+ 1
2

i · ∇iµn+
1
2

)
,

which leads to (21). �

Remark 4.2. (i) The linear, second order in time discretization preserves the energy
dissipation rate. If we remove the overline in the above numerical scheme, we end
up with the Crank-Nicolson scheme which is second order but nonlinear, uncon-
ditionally energy stable. (ii) The discrete boundary conditions are either periodic
boundary conditions or the consistent physical boundary conditions with resect to
the continuous system, discretized at n + 1

2 . (iii) If we retain the boundary terms
due to inhomogeneous boundary conditions in the energy dissipation rate, a second
order in time semidiscrete scheme can be derived as well which preserves the energy
dissipation rate. (iv) In practice, when the free energy contains quadratic terms
like ∥∇vi∥2, there is no need to introduce a new intermediate variable qj to replace
it. The variation of the quadratic term is a linear term −∇2vi in the chemical
potential, which is treated semi-implicitly at level n + 1

2 . The resulting scheme is
unconditionally energy stable.

We note that the second order in time scheme for the general thermodynamic
system can also be obtained using the Backward Difference (BDF) method. The
linear, second order in time BDF scheme is given as follows.

Scheme 4.2. (Second Order, Linear BDF2 Scheme). Given initial conditions
Φ0, q0i , we first compute Φ1, q1i by a first order scheme. Having computed Φn−1, qn−1

i ,



892 J. ZHAO, X. YANG, Y. GONG, X. ZHAO, X. YANG, J. LI, AND Q. WANG

and Φn, qni , we compute Φn+1, qn+1
i as follows:

(27)

δtΦ
n+1 =

[ N ′∑
i=0

(−1)i+1∇i ·Mn+1

i · ∇i +Mn+1

a

]
µn+1,

µn+1 =
m∑
i=0

(−1)iβi∆
iΦn+1 +

N∑
i,j=1

αij

[
qn+1
i

∂qj
∂Φ

n+1

+ qn+1
j

∂qi
∂Φ

n+1

−∇ · (qn+1
i

∂qj
∂∇Φ

n+1

)−∇ · (qn+1
j

∂qi
∂∇Φ

n+1

) +∇∇ : (qn+1
i

∂qj
∂∇∇Φ

n+1

)

+∇∇ : (qn+1
j

∂qi
∂∇∇Φ

n+1

) + · · ·
]
,

δtq
n+1
i = (∂qi∂Φ )

n+1

· δtΦn+1 + ( ∂qi
∂∇Φ )

n+1

: ∇δtΦn+1

+( ∂qi
∂∇∇Φ )

n+1...∇∇δtΦn+1 + · · · .

Theorem 4.2. Scheme 4.2 is unconditionally energy stable, and satisfies the fol-
lowing discrete identity leading to an energy decay

(28) Fn+1 − Fn + F̃n = −∆t
N ′∑
i=0

(
∇iµn+1,M

n+1

i · ∇iµn+1
)
,

where

(29)

Fn =
m∑
i=0

βi

4 (∥∇
iΦn∥2 + ∥∇i(2Φn − Φn−1)∥2)

+
N∑

i,j=1

αij

2 [(qni , q
n
j ) + (2qni − qn−1

i , 2qnj − qn−1
j )],

F̃n =
m∑
i=0

βi

4 ∥∇
i(Φn+1 − 2Φn +Φn−1)∥2

+
N∑

i,j=1

αij

2 (qn+1
i − 2qni + qn−1

i , qn+1
j − 2qnj + qn−1

j ).

In particular (since F̃n ≥ 0)

(30) Fn+1 − Fn ≤ −∆t

N ′∑
i=0

(
∇iµn+1,M

n+1

i · ∇iµn+1
)
.

Proof. Analogous to the proof of Theorem 4.1, we have from (27)

(31)

m∑
i=0

βi(∇iΦn+1,∇iδtΦ
n+1) +

N∑
i,j=1

αij [(q
n+1
i , δtq

n+1
j ) + (δtq

n+1
i , qn+1

j )]

= −
∑N ′

i=0

(
∇iµn+1,M

n+1

i · ∇iµn+1
)
.

Combining the following identity

fn+1 · δtgn+1 + δtf
n+1 · gn+1 =

1

2∆t

[
fn+1gn+1 + (2fn+1 − fn)(2gn+1 − gn)

−fngn − (2fn − fn−1)(2gn − gn−1)

+(fn+1 − 2fn + fn−1)(gn+1 − 2gn + gn−1)
]
,

and (31) leads to (28). �

Remark 4.3. The excessive energy dissipation rate in F̃n renders a more dissipative
equation system at the discrete level.

Theorem 4.3. There exists a unique solution for linear system resulted from semi-
discrete scheme 4.1 and 4.2, respectively.
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Proof. Here we show the proof for the Crank-Nicolson scheme, as the proof for
the BDF2 scheme is similar. Since the model (18) is rather general, to simplify our
proof, we only consider the case βi > 0, Mi > 0, and q = q(Φ,∇Φ), (which includes
the broadly used Allen-Cahn and Cahn-Hilliard type equations). We remark these
assumptions are not absolutely necessary, but the detailed proof would be much
more complex (such as to use Poincar inequality to prove the coercivity of the
bilinear form when some βi or Mi are zero [16]). Here we only illustrate the idea.

The weak form of scheme 4.1 is given as follows: denote q = (q1, q2, · · · , qN ),

and r = (r1, r2, · · · , rN ). We set initial condition (Φ0, µ0, q0) ∈ Hm(Ω)×HN ′
(Ω)×

(L2(Ω))N . Given (Φn−1, µn−1, qn−1) ∈ Hm(Ω)×HN ′
(Ω)×(L2(Ω))N and (Φn, µn, qn)

∈ Hm(Ω) × HN ′
(Ω) × (L2(Ω))N , we can obtain (Φn+1, µn+1, qn+1) ∈ Hm(Ω) ×

HN ′
(Ω)× (L2(Ω))N from the following system

(32)

(δ+t Φ
n, w) +

N ′∑
i=0

(
M

n+ 1
2

i · ∇iµn+
1
2 ,∇iw

)
− (Mn+ 1

2

a µn+
1
2 , w) = 0,

(µn+
1
2 ,Ψ)−

m∑
i=0

βi(∇iΦn+
1
2 ,∇iΨ)

−
N∑

i,j=1

αij

[
(q
n+ 1

2
i

∂qj
∂Φ

n+ 1
2

,Ψ) + (q
n+ 1

2
j

∂qi
∂Φ

n+ 1
2

,Ψ)

+(q
n+ 1

2
i

∂qj
∂∇Φ

n+ 1
2

,∇Ψ) + (q
n+ 1

2
j

∂qi
∂∇Φ

n+ 1
2

,∇Ψ)
]
= 0,

(δ+t q
n
i , ri)− (∂qi∂Φ

n+ 1
2 · δ+t Φn, ri)− (ri

∂qi
∂∇Φ

n+ 1
2

,∇δ+t Φn) = 0, i = 1, 2, · · · , N.

The week form (32) could be rewritten as

(33) a
(
(δ+t Φ

n, µn+
1
2 , qn+

1
2 ), (Ψ, w, r)

)
= l(Ψ, w, r),

where the bilinear form a is given as
(34)

a
(
(Φ, µ, q), (Ψ, w, r)

)
= (Φ, w) +

N ′∑
i=0

(
M

n+ 1
2

i · ∇iµ,∇iw
)
− (Mn+ 1

2

a µ,w)− (µ,Ψ)

+
N∑

i,j=1

αij

[
(qi

∂qj
∂Φ

n+ 1
2

,Ψ) + (qj
∂qi
∂Φ

n+ 1
2

,Ψ) + (qi
∂qj
∂∇Φ

n+ 1
2

,∇Ψ) + (qj
∂qi
∂∇Φ

n+ 1
2

,∇Ψ)
]

+
m∑
i=0

∆t
2 βi(∇

iΦ,∇iΨ) + 2
∆t

N∑
i,j=1

αij
[
(qi, rj) + (qj , ri)

]
−

N∑
i,j=1

αij

[
(ri

∂qj
∂Φ

n+ 1
2

,Φ) + (rj
∂qi
∂Φ

n+ 1
2

,Φ) + (ri
∂qj
∂∇Φ

n+ 1
2

,∇Φ) + (rj
∂qi
∂∇Φ

n+ 1
2

,∇Φ)
]
,

and the right-hand-side linear form is given by

(35) l(Ψ, w, r) = −
m∑
i=0

βi(∇iΦn,∇iΨ) +
2

∆t

N∑
i,j=1

αij
[
(qni , rj) + (qnj , ri)

]
.

Therefore, it is easily seen the bilinear form a is continuous, i.e.

a
(
(Φ, µ, q), (Ψ, w, r)

)
≤α1∥Φ∥Hm(Ω)∥Ψ∥Hm(Ω)

+ α2∥µ∥HN′ (Ω)∥w∥HN′ (Ω) + α3

N∑
i=1

∥qi∥∥ri∥,(36)
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with α1, α2, α3 > 0. In addition, one can shown

a
(
(Φ, µ, q), (Φ, µ, q)

)
=

N∑
i=0

(
M

n+ 1
2

i · ∇iµ,∇iµ
)
+

m∑
i=0

∆t

2
βi∥∇iΦ∥2 + 4

∆t

N∑
i,j=1

αij(qi, qj),(37)

such that

(38) a
(
(Φ, µ, q), (Φ, µ, q)

)
≤ C1∥µ∥2HN′ (Ω)

+ C2∥Φ∥2Hm(Ω) + C3

N∑
i=1

∥qi∥2L2(Ω),

with C1 > 0,C2 > 0,C3 > 0 (given Mi, βi, (αij) are positive definite), i.e. the
bilinear form a is coercive. then the existence and uniqueness of the weak solution
(Φn+1, µn+1, qn+1

i ) ∈ Hm(Ω)×HN ′
(Ω)× (L2(Ω))N directly follows from the Lax-

Milgram theorem [16].
�

4.2. Spatial discretization. Here for simplicity, we present a spatial discretiza-
tion in 2D space. We remark that the results obtained in this section also work
for 3D space. Following the notations in [20], we consider a rectangular domain
Ω = [0, Lx]× [0, Ly] in 2D space, and let Nx, Ny be positive integers. The domain
Ω is uniformly partitioned with mesh sizes hx = Lx/Nx, hy = Ly/Ny. The grid
points are denoted by

(39) Ωh =
{
(xi, yj)|xi = ihx, yj = jhy, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny

}
.

We define the following finite difference operators

(40)
δ+x fij =

fi+1,j−fi,j
hx

, δ−x fi,j =
fi,j−fi−1,j

hx
, δxfi,j =

δ+x +δ−x
2 fi,j ,

δ+y fij =
fi,j+1−fi,j

hy
, δ−y fi,j =

fi,j−fi−1,j

hy
, δyfi,j =

δ+y +δ−y
2 fi,j ,

(41) ∇+
h =

(
δ+x

δ+y

)
,∇−

h =

(
δ−x

δ−y

)
,∇h =

1

2
(∇+

h +∇−
h ),∆h = δ+x δ

−
x + δ+y δ

−
y .

The discrete inner product and norm are defined by

(42) (f, g)h =

Nx−1∑
i=0

Ny−1∑
j=0

fi,jgi,jhxhy, ∥f∥h =
√
(f, f)h.

The following summation-by-part formulas are analogous to the integration-by-part
formulas

(43) (f, δ+α g)h + (δ−α f, g)h = 0, (f, δαg)h + (δαf, g)h = 0,

where f and g satisfy periodic boundary conditions.
Then, the fully discrete CN scheme is given by the following.

Scheme 4.3. (Full Discrete CN Scheme). Given initial conditions Φ0, q0i , we first
compute Φ1, q1i by a first order scheme. Having computed Φn−1, qn−1

i , and Φn, qni ,
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we compute Φn+1, qn+1
i as follows.

(44)

δ+t Φ
n =

[ N ′∑
i=0

(−1)i+1∇i

h ·M
n+ 1

2

i · ∇i

h +Mn+ 1
2

a

]
µn+

1
2 ,

µn+
1
2 =

m∑
i=1

(−1)iβi∆
i
hΦ

n+ 1
2 +

N∑
i,j=1

αij [q
n+ 1

2
i

∂qj
∂Φ

n+ 1
2

+ q
n+ 1

2
j

∂qi
∂Φ

n+ 1
2

−∇h · (q
n+ 1

2
i

∂qj
∂∇hΦ

n+ 1
2

)−∇h · (q
n+ 1

2
j

∂qi
∂∇hΦ

n+ 1
2

)

+∇h∇h : (q
n+ 1

2
i

∂qj
∂∇h∇hΦ

n+ 1
2

) +∇h∇h : (q
n+ 1

2
j

∂qi
∂∇h∇hΦ

n+ 1
2

) + · · · ],

δ+t q
n
i = ∂qi

∂Φ

n+ 1
2 · δ+t Φn + ∂qi

∂∇hΦ

n+ 1
2

: ∇hδ
+
t Φ

n + ∂qi
∂∇h∇hΦ

n+ 1
2 ...∇h∇hδ

+
t Φ

n + · · · .

Analogously, we have the fully discrete BDF2 scheme.

Scheme 4.4. (Full Discrete BDF2 Scheme). Given initial conditions Φ0, q0i , we
first compute Φ1, q1i by a first order scheme. Having computed Φn−1, qn−1

i , and

Φn, qni , we compute Φn+1, qn+1
i as follows

(45)

δtΦ
n+1 =

[ N ′∑
i=0

(−1)i+1∇i

h ·M
n+1

i · ∇i

h +Mn+1

a

]
µn+1,

µn+1 =
m∑
i=1

(−1)iβi∆
i
hΦ

n+1 +
N∑

i,j=1

αij

[
qn+1
i

∂qj
∂Φ

n+1

+ qn+1
j

∂qi
∂Φ

n+1

−∇h · (qn+1
i

∂qj
∂∇hΦ

n+1

)−∇h · (qn+1
j

∂qi
∂∇hΦ

n+1

)

+∇h∇h : (qn+1
i

∂qj
∂∇h∇hΦ

n+1

) +∇h∇h : (qn+1
j

∂qi
∂∇h∇hΦ

n+1

) + · · ·
]
,

δtq
n+1
i = ∂qi

∂Φ

n+1

· δtΦn+1 + ∂qi
∂∇hΦ

n+1

: ∇hδtΦ
n+1

+ ∂qi
∂∇h∇hΦ

n+1...∇h∇hδtΦ
n+1 + · · · .

Theorem 4.4. The full discrete schemes 4.3 and 4.4 are unconditional energy
stable. In particular, Scheme 4.3 satisfies the discrete energy law

(46) Fn+1
A − FnA = −∆t

N ′∑
i=0

(
∇i

hµ
n+ 1

2 ,M
n+ 1

2

i · ∇i

hµ
n+ 1

2

)
h
,

and Scheme 4.4 satisfies the discrete energy law

(47) Fn+1
B − FnB + F̃nB = −∆t

N ′∑
i=0

(
∇i

hµ
n+1,M

n+1

i · ∇i

hµ
n+1
)
h
,

where

(48)

F kA =
m∑
i=0

1
2βi∥(∇

+
h )
iΦk∥2h +

N∑
i,j=1

αij(q
k
i , q

k
j )h, k ∈ N,

FnB =
m∑
i=0

βi

4 (∥(∇
+
h )
iΦn∥2h + ∥(∇+

h )
i(2Φn − Φn−1)∥2h)

+
N∑

i,j=1

αij

2 [(qni , q
n
j )h + (2qni − qn−1

i , 2qnj − qn−1
j )h],

F̃nB =
m∑
i=0

βi

4 ∥(∇
+
h )
i(Φn+1 − 2Φn +Φn−1)∥2h

+
N∑

i,j=1

αij

2 (qn+1
i − 2qni + qn−1

i , qn+1
j − 2qnj + qn−1

j )h.
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Proof. The proof is similar to the proof of the semi-discrete scheme when the dis-
crete integration-by-parts formula are applied. We thus omit it for simplicity. �

For the linear schemes, we have the following theorem about their solvability.

Theorem 4.5. The linear systems resulted from fully discrete schemes given by
4.3 and 4.4, respectively, are uniquely solvable.

Proof. To proof the existence and uniqueness of the linear system of equations, we
only need to show that for the corresponding homogeneous linear system, there
exists only a zero solution. For simplicity, we present the proof for the CN scheme
only. The proof for the other schemes are similar.

The system (44) corresponds to the homogeneous linear equation system

(49)



2
∆tΦ =

[ N ′∑
i=0

(−1)i+1∇i

h ·M
n+ 1

2

i · ∇i

h +Mn+ 1
2

a

]
µ,

µ =
m∑
i=0

(−1)iβi∆
i
hΦ+

N∑
i,j=1

αij [qi
∂qj
∂Φ

n+ 1
2

+ qj
∂qi
∂Φ

n+ 1
2

−∇h · (qi ∂qj
∂∇hΦ

n+ 1
2

)−∇h · (qj ∂qi
∂∇hΦ

n+ 1
2

)

+∇h∇h : (qi
∂qj

∂∇h∇hΦ

n+ 1
2

) +∇h∇h : (qj
∂qi

∂∇h∇hΦ

n+ 1
2

) + · · · ],

qi =
∂qi
∂Φ

n+ 1
2 · Φ+ ∂qi

∂∇hΦ

n+ 1
2

: ∇hΦ+ ∂qi
∂∇h∇hΦ

n+ 1
2 ...∇h∇hΦ+ · · · ,

where Φ, µ, qi are unknowns. Analogous to the proof of Theorem 4.1, we can deduce
from (49) that

(50)
m∑
i=0

βi∥(∇+
h )
iΦ∥2h +

N∑
i,j=1

2αij(qi, qj)h +
∆t

2
(∇i

hµ,M
n+ 1

2

i · ∇i

hµ)h = 0.

If βi > 0 and (αi,j)N×N is positive definite, then we have from (49) and (50) that

qi = 0, µ = 0, Φ = 0.

This completes the proof.
�

5. Energy Stable Schemes of Dissipative Thermodynamic Systems

In previous two sections, we have presented a general framework to derive general
thermodynamic systems and develop second order energy stable numerical schemes
for a broad class of dissipative thermodynamic systems. In this section, we present
several specific examples, relating numerical approximations based on EQM, to
demonstrate the effective utility of the new approach. We focus on two widely
used models: the Allen-Cahn and the Cahn-Hilliard equation. The Allen-Cahn
equation and the Cahn-Hilliard equation both describe relaxation dynamics of a
thermodynamic process. The Cahn-Hilliard equation conserves a first integral of
the thermodynamic variable while the Allen-Cahn does not. This is a main feature
that separates these two models.

5.1. Allen-Cahn equations. Given the expression of the free energy F [ϕ], where
ϕ is the phase variable. The Allen-Cahn equation is given by

(51) ∂tϕ = −λ(ϕ)µ, µ =
δF

δϕ
.
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where λ(ϕ) ≥ 0 is the motility matrix, and µ = δF
δϕ is the variation of the free

energy with respect to ϕ, named generalized chemical potential. Here, the boundary
condition can be either a periodic or the Neumann boundary condition. The Allen-
Cahn equation has been used to model various multi-phasic material systems.

5.1.1. Phase field models for binary fluids. Consider a free energy with a
double well bulk potential

(52) F =

∫
Ω

[
ε2

2
|∇ϕ|2 + 1

4
(1− ϕ2)2]dx.

The corresponding Allen-Cahn equation for the immiscible binary fluid is given by

(53)


∂tϕ = ε2∆ϕ− (ϕ3 − ϕ), in Ωt

∇ϕ · n = 0, on ∂Ωt,

ϕ|t=0 = ϕ0, in Ω.

It has an energy dissipation law given below

(54)
dF

dt
=

∫
Ω

δF

δϕ

∂ϕ

∂t
dx = −

∫
Ω

(
ε2∆ϕ− (ϕ3 − ϕ)

)2
dx.

Here, we introduce an intermediate variable q =
√

1
2 (1 − ϕ2), and take time de-

rivative qt = g(ϕ)ϕt with g(ϕ) =
∂q
∂ϕ = −

√
2ϕ to reformulate the equation in new

variables as follows

(55)


∂tϕ = ε2∆ϕ− qg(ϕ), in Ωt

∂tq = g(ϕ)∂tϕ, in Ωt,

∇ϕ · n = 0, on ∂Ωt,

ϕ|t=0 = ϕ0, q|t=0 =
√

1
2 (1− ϕ20), in Ω.

Notice that equation (53) is equivalent to (55) with the energy law:

(56)
dF

dt
= −

∫
Ω

(ε2∆ϕ− qg(ϕ))2dx, F =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

2
q2
]
.

We next present two linear, second order schemes to solve this system of equa-
tions. The second order numerical scheme based on the Crank-Nicolson method in
time is given by

Scheme 5.1. Set ϕ0 = ϕ|t=0, and q
0 = 1√

2
(1 − (ϕ0)2). After obtained (ϕn, qn),

and (ϕn−1, qn−1), we calculate (ϕn+1, qn+1) via

(57)


δ+t ϕ

n = ε2∆ϕn+
1
2 − qn+

1
2 g(ϕ

n+ 1
2 ), in Ωt,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, in Ωt,

∇ϕn+1 · n = 0, on ∂Ωt.

Notice that the intermediate variable q can be eliminated. In fact, it follows

from qn+1 = q0+
∑n
k=0 g(ϕ

k+ 1
2 )δ+t ϕ

k and qn = q0+
∑n−1
k=0 g(ϕ

k+ 1
2 )δ+t ϕ

k, such that

(58) qn+
1
2 = q0 + g(ϕ

n+ 1
2 )δ+t ϕ

n +

n−1∑
k=0

g(ϕ
k+ 1

2 )δ+t ϕ
k.

Thus, substituting (58) into (57), we actually solve the following equation with only
ϕ.
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Scheme 5.2. Set ϕ0 = ϕ|t=0, and q0 = 1√
2
(1 − (ϕ0)2). After obtained ϕn, and

ϕn−1, we calculate ϕn+1 via
(59) δ+t ϕ

n = ε2∆ϕn+
1
2 − g(ϕ

n+ 1
2 )
[
q0 + 1

2g(ϕ
n+ 1

2 )δ+t ϕ
n +

n−1∑
k=0

g(ϕ
k+ 1

2 )δ+t ϕ
k
]
in Ωt

∇ϕn+1 · n = 0, on ∂Ωt.

A second order numerical scheme based on BDF2 is given by the following
scheme.

Scheme 5.3. Set ϕ0 = ϕ|t=0, and q
0 = 1√

2
(1 − (ϕ0)2). After obtaining (ϕn, qn)

and (ϕn−1, qn−1), we calculate (ϕn+1, qn+1) via

(60)


δtϕ

n+1 = ε2∆ϕn+1 − qn+1g(ϕ
n+1

), in Ωt,

δtq
n+1 = g(ϕ

n+1
)δtϕ

n+1, in Ωt,

∇ϕn+1 · n = 0, on ∂Ωt.

Similarly, by eliminating intermediate variable q and from

(61) qn+1 − qn =
1

3
(qn − qn−1) + 2δtg(ϕ

n+1
)δtϕ

n+1,

we obtain

(62) qn+1 = q0 +

n∑
i=0

(
1

3
)i(q1 − q0) + 2δt

n∑
i=0

i∑
k=1

(
1

3
)i−kg(ϕ

k+1
)δtϕ

k+1.

Then, the BDF2 scheme is essentially equivalent to the following.

Scheme 5.4. Set ϕ0 = ϕ|t=0, and q
0 = 1√

2
(1− (ϕ0)2), q1 = 1√

2
(1− (ϕ1)2). After

obtaining ϕn and ϕn−1, we calculate ϕn+1 via

(63)


δtϕ

n+1 = ε2∆ϕn+1 − g(ϕ
n+1

)
[
q0 +

n∑
i=0

( 13 )
i(q1 − q0)

+2δt
n∑
i=0

i∑
k=1

( 13 )
i−kg(ϕ

k+1
)δtϕ

k+1
]
, in Ωt

∇ϕn+1 · n = 0, on ∂Ωt.

As alluded to in the previous section, the choice of intermediate variables is not
unique; some may be more proper than the others. For instance, for the Allen-Cahn
equation with the free energy containing the double-well potential, we can rewrite
it as

(64) F =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

2
γϕ2 +

(1
4
(ϕ2 − 1)2 − 1

2
γϕ2 +A

)
−A

]
,

where A is a (large enough) constant, such that 1
4 (ϕ

2 − 1)2 − γϕ2 + A > 0. We
introduce the intermediate variable q

(65) q =

√
2

2
((1 + γ)− ϕ2), A =

1

4
(1− (1 + γ)2), g(ϕ) = q′ = −

√
2ϕ.

Then, the equivalent equation is given by

(66)


∂tϕ = ε2∆ϕ− γϕ− qg(ϕ), in Ωt,

∂tq = g(ϕ)∂tϕ, in Ωt,

∇ϕ · n = 0, on ∂Ωt,

ϕ|t=0 = ϕ0, q|t=0 = q(ϕ0), in Ω.
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An energy stable scheme based on this formulation using the CN method is given
by the following.

Scheme 5.5. Set ϕ0 = ϕ|t=0 and q0 = 1√
2
(1+ γ− (ϕ0)2). After obtaining (ϕn, qn)

and (ϕn−1, qn−1), we calculate (ϕn+1, qn+1) via

(67)


δ+t ϕ

n = ε2∆ϕn+
1
2 − γϕn+

1
2 − qn+

1
2 g(ϕ

n+ 1
2 ), in Ωt,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, in Ωt,

∇ϕn+1 · n = 0, on ∂Ωt.

Remark 5.1. The basic idea of the EQ approach is to transform the free energy
into a quadratic form. Since the variation of the quadratic form is linear, we then
obtain a linear scheme. The EQ method is essentially a linearization method.

Another choice of the intermediate variables is to use

(68) p = ε∇ϕ, q =
1√
2
(1− ϕ2) g(ϕ) = −

√
2ϕ,

to transform the free energy into

(69) F =

∫
Ω

dx
[1
2
|p|2 + 1

2
q2
]
.

Then, following the EQ strategy, we end up with a new scheme.

Scheme 5.6. Set ϕ0 = ϕ|t=0 q
0 = 1√

2
(1 − (ϕ0)2), p0 = ε∇ϕ0, . For all n ≥ 0,

given (ϕn, qn,pn) and (ϕn−1, qn−1,pn−1), we compute (ϕn+1, qn+1,pn+1) using the
following scheme

(70)


δ+t ϕ

n = ∇ · (εpn+ 1
2 )− qn+

1
2 g(ϕ

n+ 1
2 ), in Ωt,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, in Ωt,

δ+t p
n = ε∇δ+t ϕn, in Ωt,

∇ϕn+1 · n = 0, on Ωt.

Given the consistent initial condition p0 = ε∇ϕ0, p−1 = ε∇ϕ−1, we easily obtain
pn+

1
2 = ε∇ϕn+ 1

2 . We note that this scheme is equivalent to scheme 5.1.
Yet, another choice of free energy quadratization is to introduce intermediate

variables p and q as follows:

(71) p =
√
ε2|∇ϕ|2 +A, ∂tp = h(ϕ) · ∇∂tϕ, h(ϕ) =

ε2∇ϕ√
ε2|∇ϕ|2 +A

,

(72) q =
1√
2
(1− ϕ2), ∂tq = g(ϕ)∂tϕ, g(ϕ) = −

√
2ϕ.

The free energy is expressed as follows

(73) F =

∫
Ω

dx
[1
2
p2 +

1

2
q2 − 1

2
A
]
.

Then, the corresponding numerical scheme resulted from applying EQ method is
given by the following.
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Scheme 5.7. Set ϕ0 = ϕ|t=0, q
0 = 1√

2
(1 − (ϕ0)2), p0 =

√
ε2|∇ϕ|2 +A. For all

n ≥ 0, given (ϕn, qn, pn) and (ϕn−1, qn−1, pn−1), we obtain (ϕn+1, qn+1, pn+1) by
the following scheme

(74)


δ+t ϕ

n = ∇ · (pn+ 1
2h(ϕ

n+ 1
2 ))− qn+

1
2 g(ϕ

n+ 1
2 ), in Ωt,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, in Ωt,

δ+t p
n = h(ϕ

n+ 1
2 ) · ∇δ+t ϕn, in Ωt,

∇ϕn+1 · n = 0, on Ωt.

One can easily verify that if we propose proper initial conditions and time ex-
trapolation for h, namely p0 =

√
ε2|∇ϕ0|2 +A, p−1 =

√
ε2|∇ϕ−1|2 +A, and

hn+
1
2 = ε2∇ϕn+1

2

1
2

(√
ε2|∇ϕn|2+A+

√
ε2|∇ϕn+1|2+A

) , the new scheme is equivalent to the

previous one. However, in order to linearize it, we have to use a second order

approximation hn+
1
2 = ε2∇ϕn+1

2√
ε2|∇ϕn+1

2 |2+A
.

Another energy stable method can be derived [41, 40], if we introduce a scalar
variable

q =
√
2[
∫
Ω
f(ϕ)dx+ C0], C0 > 0, g(ϕ) = δq

δϕ =
δf
δϕ√

2[
∫
Ω
f(ϕ)dx+C0]

. Then, the free

energy is transformed as

(75) F =

∫
Ω

ε2

2
|∇ϕ|2dx+

q2

2
.

and the chemical potential is µ = −∇2ϕ + 2q δqδϕ . A second order energy stable

scheme is given by the following.

Scheme 5.8. Set ϕ0 = ϕ|t=0 and q0 =
√
2[
∫
Ω
f(ϕ0)dx+ C0]. After obtaining

(ϕn, qn) and (ϕn−1, qn−1), we calculate (ϕn+1, qn+1) via

(76)


δ+t ϕ

n = ε2∆ϕn+
1
2 − qn+

1
2 g(ϕ

n+ 1
2 ), in Ωt,

δ+t q
n =
∫
Ω
g(ϕ

n+ 1
2 )δ+t ϕ

ndx, in Ωt,

∇ϕn+1 · n = 0, on ∂Ωt.

5.1.2. Allen-Cahn equations subject to a volume constraint. As mentioned
earlier, the Allen-Cahn equation does not conserve the ”total volume” if ϕ is identi-
fied as the volume fraction. To enforce the constraint, we augment the free energy
by a penalizing term as follows

(77) F =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

4
(1− ϕ2)2

]
+
η

2
(

∫
Ω

ϕ(t)dx− V0)
2,

where V0 is the initial volume and η > 0 is a prescribed constant. With the modified
free energy, the Allen-Cahn equation is given by

(78)


∂tϕ = ε2∆ϕ− (ϕ3 − ϕ)− η

( ∫
Ω
ϕ(t)dx− V0

)
, in Ωt,

∇ϕ · n = 0, on ∂Ωt,

ϕ|t=0 = ϕ0, in Ω.
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We introduce q =
√

1
2 (1 − ϕ2) and ζ =

√
η
( ∫

Ω
ϕ(t)dx − V0

)
. Then, the free

energy is reformulated into

(79) F =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

2
q2
]
+

1

2
ζ2.

Then the equivalent equations are given by

(80)



∂tϕ = ε2∆ϕ− qg(ϕ)−√
ηζ, in Ωt,

∂tq = g1(ϕ)∂tϕ, g1(ϕ) = −
√
2ϕ, in Ωt,

∂tζ =
√
η
∫
Ω
∂tϕdx, in Ωt,

∇ϕ · n = 0, on ∂Ωt,

ϕ|t=0 = ϕ0, q|t=0 = q(ϕ0), in Ω.

The corresponding linear, second order, energy stable numerical scheme is given
by the following.

Scheme 5.9. Set ϕ0 = ϕ|t=0, q
0 = 1√

2
(1− (ϕ0)2), ζ0 =

√
η(
∫
Ω
ϕ0dx− V0). For all

n ≥ 0, given (ϕn, qn, ζn) and (ϕn−1, qn−1, ζn−1), we calculate (ϕn+1, qn+1, ζn+1) by
the following scheme

(81)


δ+t ϕ

n = ε2∆ϕn+
1
2 − qn+

1
2 g(ϕ

n+ 1
2 )−√

ηζn+
1
2 , in Ωt,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, in Ωt,

δ+t ζ
n =

√
η
∫
Ω
δ+t ϕ

ndx, in Ωt,

∇ϕn+1 · n = 0, on Ωt.

Notice that ζ is a time dependent function and q is a time as well as space
dependent function after the quadratized reformulation. We discretize the equa-
tions in Scheme 5.9 using finite difference method in space. Figure 1 depicts a
numerical simulation of a reshaping of a cross under Allen-Cahn dynamics involv-
ing a binary fluid. Here we choose Lx = Ly = 1, Nx = Ny = 128, the ini-

tial condition ϕ = max(a, b), with a = min(tanh 0.1−|x−0.5|
ε , tanh 0.2−|y−0.5|

ε ) and

b = min(tanh 0.2−|x−0.5|
ε , tanh 0.1−|y−0.5|

ε , ), and time step δt = 10−3, and ε = 10−2,
η = 20. Figure 2(a) shows the volume ratio between the initial volume and the
volume at time 0 ≤ t ≤ 500. Figure 2(b) demonstrates the total energy decay as a
function of time. The energy settles down after t = 150.

5.1.3. Phase field model with an elastic bending energy. We briefly discuss
a phase field model for an elastic membrane with the bending energy and then
demonstrate how the EQ method can be applied to yield energy stable, linear
schemes. Here, the free energy F is consisted of three parts:

(82) F = Fb + Fsurf + Fvol,

where Fb is the Helfrich elastic or bending energy given by

(83) Fb =

∫
Ω

γb
2

(
∇2ϕ− fb(ϕ)

)2
dx, fb(ϕ) =

2

ε2
ϕ(ϕ− 1)(2ϕ− 1− ε√

2
C0),

C0 is the spontaneous curvature; Fvol is the volume constraint, given by

(84) Fvol =
λV
2

(V (t)− V0)
2, V (t) =

∫
Ω

ϕ(x, t)dx, V0 = V (0);
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Figure 1. Coarsening dynamics with the volume-constraint
Allen-Cahn equation. The snapshots of ϕ (with red representing
1, and blue representing -1) at times t = 0, 5, 10, 20, 30, 40, 50, 100
are shown respectively.

(a) Volume Ratio (b) Energy

Figure 2. Volume ratio and energy function at different times of
the simulation shown in Figure 1. The volume is conserved up to
the error tolerance and the free energy reaches a near steady state
at the end of the simulation.

and Fsurf is the constraint for the surface area,
(85)

Fsurf =
λS
2
(S(t)−S0)

2, S(t) =

∫
Ω

[
ε

2
|∇ϕ(t)|2+ 1

ε
ϕ2(t)(1−ϕ(t))2]dx, S0 = S(0).

The chemical potential µ is given by

(86) µ =
δF

δϕ
= γ(∇2 − fb(ϕ))(∇2ϕ− f ′b(ϕ)) + λV (V (t)− V0) + λS(S(t)− S0)

The Allen-Cahn model for relaxation dynamics of the membrane is given by

(87) τ∂tϕ = −δF
δϕ
,

where τ is the relaxation time. Specifically,
(88)

τ∂tϕ = −γ
(
∇4ϕ−f ′b(ϕ)∇2ϕ−∇2fb(ϕ)+fb(ϕ)f

′
b(ϕ)

)
−λV (V (t)−V0)−λS(S(t)−S0).
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We introduce the following intermediate variables to quadratize the free energy
density function f:

(89) q =

√
γb
2

(
∇2ϕ− fb(ϕ)

)
, ζ =

√
λV
2

(
V (t)− V0

)
, ξ =

√
λS
2

(
S(t)− S0

)
.

The time evolutionary equations for the intermediate variables are given by

(90)


∂tq = ∇2∂tϕ− f ′b(ϕ)∂tϕ, in Ωt,

∂tζ =
∫
Ω
∂tϕdx, in Ωt,

∂tξ =
∫
Ω

(
− γ∆ϕ+ f ′(ϕ)

)
∂tϕdx, in Ωt.

The free energy of the system is given by

(91) F =

∫
Ω

1

2
q2dx+

1

2
ζ2 +

1

2
ξ2.

The transport equations of the variables are summarized as follows

(92)


∂tϕ = −γ∇2q + γf ′b(ϕ)q − ζ − g(ϕ)ξ, in Ωt,

∂tq = ∇2∂tϕ− f ′b(ϕ)∂tϕ, in Ωt,

∂tζ =
∫
Ω
∂tϕdx, in Ωt,

∂tξ =
∫
Ω
g(ϕ)∂tϕdx, g(ϕ) = −γ∆ϕ+ f ′(ϕ), in Ωt.

A second order, energy stable numerical scheme is given by the following.

Scheme 5.10. Set ϕ0 = ϕ|t=0, q
0 =

√
γb
2 (∆ϕ0− fb(ϕ0)), ζ0 = ξ0 = 0. For all n ≥

0, given (ϕn, qn, ζn, ξn) and (ϕn−1, qn−1, ζn−1, ξn−1), we calculate (ϕn+1, qn+1, ζn+1,
ξn+1) by the following scheme
(93)

δ+t ϕ
n = −γ∇2qn+

1
2 + γf ′b(ϕ

n+ 1
2 )qn+

1
2 − ζn+

1
2 − g(ϕ

n+ 1
2 )ξn+

1
2 , in Ωt,

δ+t q
n =

(
∆− f ′b(ϕ

n+ 1
2 )
)
δ+t ϕ

n, in Ωt,

δ+t ζ
n =

∫
Ω
δ+t ϕ

ndx, in Ωt,

δ+t ξ
n =

∫
Ω
g(ϕ

n+ 1
2 )δ+t ϕ

ndx, in Ωt,

This scheme has been developed and investigated by Yang and Ju in [59].

5.1.4. Molecular beam epitaxial growth model. We next discuss another
Allen-Cahn type phase field model for molecular beam epitaxial(MBE) growth and
its energy stable numerical approximation. Let ϕ(x, t) be the epitaxy surface height
with x ∈ Ω, where Ω is the material’s domain ∈ Rd, d = 2, 3. Under typical
conditions for the MBE growth, the height evolution equation is given by a phase
field model of relaxation dynamics (see, e.g., [33]):

ϕt = −Mµ,(94)

whereM is the mobility coefficient and chemical potential µ = δE
δϕ is the variational

derivative of the Ehrlich–Schwoebel energy E (cf. [38, 12]), given by

E(ϕ) =

∫
Ω

(ε2
2
(∆ϕ)2 + F (∇ϕ)

)
dx,(95)

F (s) is a nonlinear, smooth function of its argument s ∈ Rd and ε is a constant
(inversely proportional to the size of the system).
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For the case of slope selection model, the second term in the free energy is given
by

F (∇ϕ) = 1

4
(|∇ϕ|2 − 1)2.(96)

Then, the governing equation for ϕ is given by

ϕt = −M δE(ϕ)

δϕ
= −M

(
ε2∆2ϕ−∇ · ((|∇ϕ|2 − 1)∇ϕ)

)
.(97)

With the periodic boundary condition or any other proper boundary conditions
that satisfy the flux-free conditions at the boundary ∂nϕ|∂Ω = 0 and ∂n∆ϕ|∂Ω = 0,
the model conserves the ”total mass”

(98)
d

dt

∫
Ω

ϕ(x, t)dx = 0.

where n is the outward normal on the boundary.
We introduce the intermediate variable q(ϕ) in terms of ϕ,

(99) q(ϕ) =

√
2

2

(
|∇ϕ|2 − 1

)
, g(∇ϕ) =

√
2∇ϕ.

Then, the free energy for F (∇ϕ) is transformed into a quadratic function of ϕ and
q:

EA(ϕ, q) =

∫
Ω

(ε2
2
(∆ϕ)2 +

1

2
q2
)
dx,(100)

We take the time derivative for the new variable q to obtain an equivalent gov-
erning system of equations:

(101)


ϕt = −M

[
− ε∆2ϕ+∇ ·

(
qg(∇ϕ)

)]
, in Ωt,

qt = g(∇ϕ) · ∇ϕt, in Ωt,

ϕ|t=0 = ϕ0, q|t=0 =
√
2
2 (|∇ϕ0|2 − 1).

Applying the EQ method, we obtain an energy stable scheme.

Scheme 5.11. Set ϕ0 = ϕ|t=0 and q0 =
√
2
2 (|∇ϕ0|2−1). Assuming that ϕn, qn are

already calculated, we compute ϕn+1 and qn+1 from the following temporal discrete
system:

(102)

 δ+t ϕ
n = −M

(
ε2∆2ϕn+

1
2 −∇ · (qn+ 1

2g(ϕ
n+ 1

2 ))
)
,

δ+t q
n = g(ϕ

n+ 1
2 ) · ∇δ+t ϕn.

This model was investigated in [64].
Another commonly used phase field model is the Cahn-Hilliard equation. We

next discuss how to discretize it systematically using EQ to arrive at energy stable
numerical schemes.

5.2. Cahn-Hilliard equations. Given the expression of the free energy F (ϕ),
where ϕ is the phase variable. The Cahn-Hilliard equation is given as follows

(103) ∂tϕ = ∇ · (M(ϕ)∇µ),
where M(ϕ) is the motility matrix and µ = δF

δϕ is the chemical potential. Here,

boundary conditions are either periodic or Neumann boundary conditions

(104) ∇ϕ · n = 0, ∇δF

δϕ
· n = 0.
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The Cahn-Hilliard equation preserves the integral
∫
Ω
ϕdx, where Ω is the domain

of ϕ in question.

5.2.1. Phase field model for immiscible binary mixtures. The phase field
model for the binary fluid mixture is given by a Cahn-Hilliard equation, in which
the free energy is given by

(105) F =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

4
(1− ϕ2)2

]
.

The governing equation in the model together with the boundary condition is given
by

(106)


∂tϕ = ∇ · (M(ϕ)∇µ), in Ωt,

µ = −ε2∆ϕ+ ϕ3 − ϕ, in Ωt,

∇ϕ · n = 0, ∇µ · n = 0, on Ωt.

Using the strategy of EQ, we introduce an intermediate variable

(107) q =
1√
2
(1− ϕ2), ∂tq = g(ϕ)∂tϕ, g(ϕ) = −

√
2ϕ

to reformulate the Cahn-Hilliard system. The following numerical scheme then
follows, which was studied by Guillen and Tierra in [23],

Scheme 5.12. Set ϕ0 = ϕ|t=0 and q0 = 1√
2
(1−(ϕ0)2), For all n ≥ 0, given (ϕn, qn)

and (ϕn−1, qn−1), we calculate (ϕn+1, qn+1) via the following scheme

(108)


δ+t ϕ

n = ∇ · (M(ϕ
n+ 1

2 )∇µn+ 1
2 )),

µn+
1
2 = −ε2∆ϕn+ 1

2 + qn+
1
2 g(ϕ

n+ 1
2 ),

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n.

5.2.2. Phase field model with the Flory-Huggins free energy for polymer
solutions. For a polymer solution, the Flory-Huggins free energy is given as follows

(109) F =

∫
Ω

dx
[γ1
2
|∇ϕ|2 + γ2(

1

N
ϕ lnϕ+ (1− ϕ) ln(1− ϕ) + χϕ(1− ϕ))

]
,

where ϕ is the polymer volume fraction, γ1 controls the strength of the confor-
mational entropy, and γ2 measures the strength of mixing free energy, N is the
polymerization index for the polymer phase (ϕ = 1), and χ the mixing parameter.
The transport equation of ϕ is given by

(110)

{
∂tϕ = λ∆µ,

µ = −γ1∆ϕ+ γ2(
1
N lnϕ− ln(1− ϕ) + 1−N

N + χ(1− 2ϕ)),

where λ is the mobility coefficient.
Following the work in [9], we regularize the logarithmic bulk potential by a C2

piecewise function. More precisely, for any 0 < σ ≪ 1, the regularized the bulk free
energy density is given by

f̂(ϕ) =
ϕ
N lnϕ+ (1−ϕ)2

2σ + (1− ϕ) lnσ − σ
2 + χ(ϕ− ϕ2), if ϕ ≥ 1− σ,

ϕ
N lnϕ+ (1− ϕ) ln(1− ϕ) + χ(ϕ− ϕ2), if σ ≤ ϕ ≤ 1− σ,

(1− ϕ) ln(1− ϕ) + ϕ2

2σ + ϕ
N lnσ − σ

2 + χ(ϕ− ϕ2), if ϕ ≤ σ.

(111)
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(a)

(b)

Figure 3. Comparison of coarsening and de-mixing dynamics us-
ing two different initial profiles. Here, the initial profiles are
(A) ϕ|t=0 = 0.5 + 10−3rand(−1, 1) and (B) ϕ|t=0 = 0.3 +
10−3rand(−1, 1), where rand(−1, 1) is random number generated
between −1 and 1. The snapshots at time t = 1, 10, 50, 100 are
shown respectively.

This effective bulk free energy density is used in numerical simulations in lieu of
the Flory-Huggins energy density. To derive the energy stable, linear scheme, We
introduce an intermediate variable to quadratize the free energy density

(112) q =

√
2(γ2f̂ +A),

where A > 0 is a constant large enough to ensure q is real valued. Then, we define
g(ϕ) = q′(ϕ). Scheme 5.12 gives the second order, linear, energy stable scheme for
the Cahn-Hilliard system. A numerical simulation of model (110) using Scheme
5.12 is shown in Figure 3, where we observe coarsening and de-mixing dynamics
with respect to different initial profiles of ϕ. For more details, readers are referred
to our paper [63, 21].

5.2.3. Phase-field crystal model. The phase field crystal model was introduced
in [14, 15] in the form of a Cahn-Hilliard equation, in which the free energy is defined
by

(113) F =

∫
Ω

dx
[1
4
ϕ4 +

a− η

2
ϕ2 − a|∇ϕ|2 + 1

2
(∆ϕ)2

]
,

where a and η are two parameters. The transport equation for ϕ is given by

(114)

{
∂tϕ = ∇ · (Mϕ∇µ),
µ = ϕ3 + (a− η)ϕ+ 2a∆ϕ+∆2ϕ.

One can design an energy stable numerical scheme for this model as its free energy
only contains an extra quartic term, in addition to the quadratic terms. The bulk

energy density can be quadratized using an intermediate variable q = ϕ2

2 . For more
details about the energy stable scheme, please refer to the paper by Yang and Han
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Figure 4. Microstructure evolution predicted by the phase field
crystal model. Snapshots of the numerical simulation at time t =
1, 2, 5, 10, 20, 30, 40, 50 are shown respectively. Her we use 256×256
numerical meshes, and time step δt = 10−3.

in [58]. Using the energy stable linear scheme, we conduct a numerical simulation
of crystal growth dynamics. Here we following the initial conditions and parameter
choices in [51], i.e.

(115) ϕ0(x) = ϕ+ ω(x)(Aϕs(x)), ϕs(x) = cos(
q√
3
y) cos(qx)− 1

2
cos(

2q√
3
y),

where q represents a wavelength related to the lattice constant, A represents an
amplitude of the fluctuations in density, and the scaling function ω(x) is defined as

(116) ω(x) =


(
1− (∥x−x0∥2

d0
)2
)2
, if ∥x− x0∥ ≤ d0,

0, otherwise

In the simulation, we choose Ω = [0, 2πq a] × [0,
√
3π
q b], a = 10,b = 12, ε = 0.325,

ϕ =
√
ε
2 , A = 4

5

(
ϕ+

√
15ε−36ϕ

2

3

)
, q =

√
3
2 .

Numerical simulations of crystal growth at different times are shown in Figure
4.

5.2.4. Phase-field model for diblock copolymers. The block copolymer is
a linear molecular chain, composed of two or more submolecular chains linked to
create a polymer chain. When the sub-chain is made of two (or three) distinct
monomer blocks, it is called a diblock (or triblock) copolymer. The phenomenolog-
ical free energy of a diblock copolymer system is given as follows
(117)

F (ϕ) =

∫
Ω

ε2

2
|∇ϕ|2 + 1

4
(ϕ2 − 1)2dx+

α

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− ϕ)(ϕ(y)− ϕ)dxdy,

where G is the Green’s function, i.e. ∆G = −δ(x− y) with the periodic boundary
condition, ϕ is the critical volume fraction of polymer A in the copolymer and δ is
the Dirac delta function.
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The phase variable ϕ = 1 denotes polymer A and ϕ = 0 polymer B. The
transport equation of the phase variable is the Cahn-Hilliard equation given by

(118)
∂tϕ = λ

(
∆µ− α(ϕ− ϕ)

)
,

µ = −ε2∆ϕ+ ϕ(ϕ2 − 1),

where λ is the motility parameter. Following the EQ approach, we introduce q =
1
2 (ϕ

2−1) and then devise the following second order in time energy stable numerical
scheme.

Scheme 5.13. Set the initial condition ϕ0 = ϕ|t=0 and q0 = 1
2 ((ϕ

0)2 − 1). Once

(ϕn, qn) and (ϕn−1, qn−1) are given, we calculate (ϕn+1, qn+1) via

(119)


δ+t ϕ

n = λ(µn+
1
2 + α(ϕn+

1
2 − ϕ),

µn+
1
2 = −ε2∆ϕn+ 1

2 + g(ϕ
n+ 1

2 )qn+
1
2 ,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n, g(ϕ
n+ 1

2 ) = ϕ
n+ 1

2 .

The model and its coupled version with hydrodynamics has been studied by
Yang and Shen in [8].

5.2.5. Phase field models of polymer blends. In this section, we discuss a
phase field model describing dynamics of fluctuations and spinodal decomposition
in polymer blends of two polymers of equal polymerization indices. The free energy
was proposed by De Gennes in 1980 [10],

(120) F =

∫
Ω

dx
[ a2

36ϕ(1− ϕ)
|∇ϕ|2 + 1

N

(
ϕ lnϕ+ (1− ϕ) ln(1− ϕ)

)
+ χϕ(1− ϕ)

]
,

where Na2 is the mean square end-to-end distance of a polymer chain and N is the
polymerization index, both of which are constants in the model.

We denote

(121) κ =
a2

18ϕ(1− ϕ)
, f(ϕ) =

1

N

(
ϕ lnϕ+ (1− ϕ) ln(1− ϕ)

)
+ χϕ(1− ϕ).

Then,

(122) F =

∫
Ω

dx
[κ
2
|∇ϕ|2 + f(ϕ)

]
.

The governing system in the phase field model is rewritten into

(123)
∂tϕ = λ∆µ,

µ = −∇ · (κ(ϕ)∇ϕ) + κ′(ϕ)|∇ϕ|2 + f ′(ϕ).

Following the idea of EQ, we introduce intermediate variables

(124) p =
√
κ(ϕ)∇ϕ, q =

√
2(f +A),

where A is a constant such that f(ϕ)+A > 0 for all feasible ϕ. The new free energy
is rewritten into

(125) F =

∫
Ω

(1
2
p2 +

1

2
q2
)
dx.

For simplicity, we denote
(126)

h(ϕ) =
∂p

∂ϕ
=

κ′(ϕ)

2
√
κ(ϕ)

∇ϕ, h(ϕ) =
∂p

∂∇ϕ
=
√
κ(ϕ), g(ϕ) =

∂q

∂ϕ
=

f ′(ϕ)√
2(f(ϕ) +A)

.
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Then, we obtain the reformulated model

(127)


ϕt = λ∆µ,

µ = −∇ · (h(ϕ)p) + h(ϕ) · p+ g(ϕ)q,

∂tq = g(ϕ)∂tϕ

∂tp = h(ϕ)∂tϕ+ h(ϕ)∇∂tϕ.

Using EQ strategy, we derive a linear, second order in time Crank-Nicolson
scheme

Scheme 5.14. Set the initial condition ϕ0 = ϕ|t=0 and q0 =
√
2(f(ϕ0) +A),

p0 =
√
κ(ϕ0)∇ϕ0. After we have calculated (ϕn, qnpn) and (ϕn−1, qn−1,pn−1), we

calculate (ϕn+1, qn+1,pn+1) via
(128)

δ+t ϕ
n = λ∆µn+

1
2 ,

µn+
1
2 = −∇ · (

√
κ(ϕ

n+ 1
2 )pn+

1
2 ) + g2(ϕ

n+ 1
2 )∇ϕn+

1
2 · pn+ 1

2 + g1(ϕ
n+ 1

2 )qn+
1
2 ,

δ+t q
n = g1(ϕ

n+ 1
2 )δ+t ϕ

n+ 1
2 ,

δ+t p
n = g2(ϕ

n+ 1
2 )δ+t ϕ

n∇ϕn+
1
2 +

√
κ(ϕ

n+ 1
2 )∇δ+t ϕn.

This model was initially investigated in [29] and later the EQ approach was
applied to it by Yang [55].

5.2.6. Anisotropic Cahn-Hilliard equation. There are many classes of free en-
ergies in the literature used to study coarsening in anisotropic fluid mixtures. For
example, one case is when the surface tension parameter depends on the concentra-
tion of the phase volume fraction, instead of being a constant; other cases include
anisotropic crystal growth due to anisotropic interactions with the substrate. To
these models, the EQ method can be readily applied to yield energy stable, linear
schemes [71]. Here, we focus on an example studied in [6] using other numerical
approaches.

Consider the free energy density of the following form

(129) F =

∫
Ω

dx
[
γ(n)

(ε2
2
|∇ϕ|2 + 1

4
(1− ϕ2)2

)
+
εβ

2
|∆ϕ|2

]
,

where n is the interface normal defined by

(130) n =
∇ϕ
|∇ϕ|

and γ(n) is the anisotropic surface tension coefficient. In two space dimension, a
fourfold symmetric anisotropic function is defined by

(131) γ(n) = 1 + α cos(4θ),

where θ is the angle formed between n and the x-axis. We remark that the last
term in the free energy density is a regularization term [6].

The transport equation of the phase variable ϕ is the Cahn-Hilliard equation
(132)

∂tϕ = λ∆µ,

µ = γ(n)f ′(ϕ) + γ′(n)f(ϕ)− ε2∇ · (γ(n)∇ϕ) + γ′(n) ε
2

2 |∇ϕ|
2 + εβ∆2ϕ,

where λ is the constant motility coefficient. Following the EQ strategy, we introduce

(133) p = εh(ϕ)∇ϕ, h(ϕ) =
√
γ(n), ∂tp = εh(ϕ)∇∂tϕ+ εh′(ϕ)∂tϕ∇ϕ
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and
(134)

q =
√
γ(n)

√
2

2
(1−ϕ2), ∂tq = g(ϕ)∂tϕ, g(ϕ) =

(
−
√
2ϕh(ϕ)+

√
2

2
(1−ϕ2)h′(ϕ)

)
.

The reformulated Cahn-Hilliard equation is given by

(135)


∂tϕ = λ∆µ,

µ = εη∆2ϕ+ g(ϕ)q +∇ · (εh(ϕ)p) + εh′(ϕ)∇ϕ · p,
∂tq = g(ϕ)∂tϕ,

∂tp = εh(ϕ)∇∂tϕ+ εh′(ϕ)∂tϕ∇ϕ.
Based on the reformulated equations, we present the linear, second order, energy

stable scheme in the following.

Scheme 5.15. Set the initial condition ϕ0 = ϕ|t=0, q
0 =

√
γ(n) 1√

2
(1 − ϕ0),

and p0 = εh(ϕ0)∇ϕ0. Given (ϕn, qn,pn) and (ϕn−1, qn−1,pn−1), we calculate
(ϕn+1, qn+1,pn+1) via

(136)



δ+t ϕ
n = λ∆µn+

1
2 ,

µn+
1
2 = εη∆2ϕn+

1
2 + g(ϕ

n+ 1
2 )qn+

1
2

+∇ · (εh(ϕn+
1
2 )pn+

1
2 ) + εh′(ϕ

n+ 1
2 )∇ϕn+

1
2 · pn+ 1

2 ,

δ+t q
n = g(ϕ

n+ 1
2 )δ+t ϕ

n,

δ+t p
n = εh(ϕ

n+ 1
2 )∇δ+t ϕn + εh′(ϕ

n+ 1
2 )δ+t ϕ

n∇ϕn+
1
2 .

This scheme has not been studied before. We have used a similar approach to
investigate the dendritic growth model in [71], which differs from this one in some
details.

5.2.7. Functionalized Cahn-Hilliard equation. The functionalized Cahn Hilliard
model has been used to describe phase separation of an amphiphilic mixture, later
several papers have been published to extend the model to study lipid bilayer mem-
brane and pearling bifurcation, formation of pore-like, micelles network structures
etc [19, 37, 11]. The free energy in the model is given by

(137) F =

∫
Ω

dx
[ε−2

2

(δF0

δϕ

)2
− ηF0

]
,

where η is a parameter and F0 is the surface energy expressed in the bulk free
energy form:

(138) F0 =

∫
Ω

dx
[ε2
2
|∇ϕ|2 + 1

4
(ϕ2 − 1)2

]
.

This free energy quantifies the competition between the surface tension and the
surface energy. The governing equation in the Cahn-Hilliard model is given by

(139)


∂tϕ = ∇ · (M(ϕ)∇µ),
µ = 3ε−2ϕ5 − (4ε−2 + η)ϕ3 + (ε−2 + η)ϕ

+ε2∆2ϕ+ (2 + ηε2)∆ϕ+ 6ϕ|∇ϕ|2 − 6∇ · (ϕ2∇ϕ).
Expanding F, we have

(140)

F =

∫
Ω

dx
[ε−2

2
ϕ6−(ε2+

η

4
)ϕ4+(

ε−2

2
+
η

2
)ϕ2+

ε2

2
(∆ϕ)2−(1+

ηε2

2
)|∇ϕ|2+3ϕ2|∇ϕ|2

]
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We rewrite it as follows
(141)

F =
∫
V
dx
[
ε−2

2

(
ϕ3 − (1 + ηε2

4 )ϕ
)2

+
(
ε−2

2 + η
2 − ε−2

2 (1 + ηε2

4 )2
)
ϕ2 + ε2

2 (∆ϕ)
2

−(1 + ηε2

2 )|∇ϕ|2 + 3ϕ2|∇ϕ|2
]
.

Following the EQ strategy, we introduce q = ε−1
(
ϕ3−(1+ηε2

4 )ϕ
)
, p =

√
6ϕ∇ϕ to

reformulate the Cahn-Hilliard equation into an equivalent system with a quadratic
energy density. Then, we derive the linear, energy stable numerical scheme as
follows.

Scheme 5.16. Set the initial condition ϕ0 = ϕ|t=0, q
0 =

√
γ(n) 1√

2
(1 − ϕ0),

and p0 = εh(ϕ0)∇ϕ0. Given (ϕn, qn,pn) and (ϕn−1, qn−1,pn−1), we calculate
(ϕn+1, qn+1,pn+1) via

(142)



δ+t ϕ
n = ∇ · (M(ϕ

n+ 1
2 )∇µn+ 1

2 )),

µ = ε2∆ϕn+
1
2 + (2 + ηε)∆ϕn+

1
2 + 2aϕn+

1
2 + qn+

1
2 g1(ϕ

n+ 1
2 )

+
√
6∇ϕn+

1
2 · pn+ 1

2 +∇ · (
√
6ϕ

n+ 1
2pn+

1
2 ),

δ+t q
n = g1(ϕ

n+ 1
2 )δ+t ϕ

n, g1(ϕ) = ε−1(3ϕ2 − 1− ηε2

4 ),

δ+t p
n =

√
6∇ϕn+

1
2 δ+t ϕ

n +
√
6ϕ

n+ 1
2∇δ+t ϕn.

This linear scheme has never been studied. However, we note that some non-
linear, convex splitting schemes for this Cahn-Hilliard model have been proposed
[18].

5.3. Phase field models for multi-component material systems. For phase
field models of multiphasic materials, there are a few versions. Here, we discuss the
one proposed by Boyer [3]. For simplicity, we focus on the three-component model.

5.3.1. Ternary phase field models. Here, we use phase variables ϕ1, ϕ2, ϕ3 to
label the three distinct phases. The free energy of the multiphasic system is defined
as follows

(143) F =

∫
Ω

dx
[ 3∑
i=1

3

8
Σiε|∇ϕi|2 +

12

ε
f(ϕ1, ϕ2, ϕ3)

]
,

where f(ϕ1, ϕ2, ϕ3) =
3∑
i=1

Σi

2 ϕ
2
i (1−ϕi)2+3Λϕ21ϕ

2
2ϕ

2
3, Σi and Λ are model parameters.

The transport equations of the phase variables are given by

(144)


∂tϕi =

M0

Σi
∆µi,

µi = − 3
4εΣi∆ϕi +

12
ε
∂f
∂ϕi

+ β, i = 1, 2, 3,

β = − 4ΣT

ε

3∑
i=1

1
Σi

∂f
∂ϕi

, 3
ΣT

=
3∑
i=1

1
Σi
.

Using the EQ strategy, we introduce

(145) q =
√

2(f +A),
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Figure 5. Dynamical evolution of a pair of biphasic drops merg-
ing in a third fluid matrix. The time step is δt = 10−3 and 1283

grid points are used. Snapshots of the numerical approximation
are taken at t = 0, 1, 2, 3, 4, 5. The color in yellow, red, and blue
represents the three phases ϕ1, ϕ2, ϕ3, respectively.

where A is a nonnegative constant such that f(ϕ) + A > 0 for all ϕ ∈ R, which is
feasible since f has a lower bound [3]. Then, the model is rewritten into

(146)



∂tϕi =
M0

Σi
∆µi,

µi = − 3
4εΣi∆ϕi + q ∂q∂ϕi

+ β, i = 1, 2, 3,

β = −4ΣT

ε

3∑
i=1

q ∂q∂ϕi
, 3

ΣT
=

3∑
i=1

1
Σi
,

qt =
∑3
i=1 gi(ϕ1, ϕ2, ϕ3)ϕi,t, gj(ϕ1, ϕ2, ϕ3) =

∂q
∂ϕj

, j = 1, 2, 3.

With the reformulated model, we derive a second order, linear, energy stable
numerical scheme as follows

Scheme 5.17. Set the initial condition ϕ0i = ϕi|t=0 and q0 =
√
2(f(ϕ0) +A).

Once we have obtained (ϕni , q
n) and (ϕn−1

i , qn−1), we calculate (ϕn+1
i , qn+1) via

(147)


δ+t ϕ

n
i = M0

Σi
∆µ

n+ 1
2

i ,

µi = − 3
4εΣi∆c

n+ 1
2

i + gi(ϕ
n+ 1

2

i )q
n+ 1

2
i + β, i = 1, 2, 3,

β = − 4ΣT

ε

3∑
i=1

q
n+ 1

2
i gi(ϕ

n+ 1
2

i ), 3
ΣT

=
3∑
i=1

1
Σi
.

This scheme has been investigated in [65]. Here we conduct a new 3D sim-
ulation shown in Figure 5. We choose Lx = Ly = Lz = 1 with mesh 1283,

and use the initial condition ϕ1 = 1
2

(
1 + max(tanh 0.1−R1

ε , tanh 0.1−R2

ε )
)
, ϕ2 =

1
2

(
1 + max(tanh 0.2−R1

ε , tanh 0.2−R2

ε )
)
(1 − ϕ1) , ϕ3 = 1 − ϕ1 − ϕ2, where R1 =√

(x− 0.5)2 + (y − 0.6)2 + (z − 0.5)2, R2 =
√

(x− 0.5)2 + (y − 0.4)2 + (z − 0.5)2.
The parameters are chosen as Σ1 = Σ2 = Σ3 = 1, ε = 10−2. Figure 5 depicts the
3D numerical simulation of drop fusion dynamics of three phasic material system.

5.3.2. Cahn-Morral model. Next, we consider the phase field model for general
multiphasic fluids. Consider a fluid with n components and let 0 ≤ ϕ(t,x) ≤ 1
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represent the volume fraction of the i-th component at time t and location x ∈ Ω.
We denote Φ = (ϕ1, ϕ2, · · · , ϕn) and define the Gibbs simplex as

(148) S =
{
Φ ∈ Rn :

n∑
i=1

ϕi = 1, ϕi ≥ 0, i = 1, 2, · · ·n
}
.

The general Cahn-Morral free energy functional is given as follows [47]

(149) F (ϕ1, ϕ2, · · · , ϕn) =
∫
Ω

n∑
i=1

ε

2
|∇ϕi|2dx+

∫
Ω

f(ϕ1, ϕ2, · · · , ϕn)dx.

There are many choices of f . For instance, one choice is

(150) f = −1

2
ΦTAΦ+ θ

n∑
i=1

ϕi lnϕi,

where θ is a positive constant and A ∈ Rn,n is a symmetric, non-negative definite
matrix describing the interaction among the different phases. Another choice is

(151) f =
1

4

n∑
i=1

ϕ2i (ϕi − 1)2.

For instance,

(152) A = −θc(llT − I), θc ∈ R+, l = (1, · · · , 1)T ∈ Rn.

When n = 3, the coefficient matrix is given by

(153) A = −θc

 0 1 1

1 0 1

1 1 0


The governing equation is derived and given in [28, 47]

(154)


∂tϕi = ∆µi, i = 1, 2 · · · , n− 1, in Ωt,

µi = −ε∆ϕi + fi(Φ) + ε∆ϕn − fn(Φ)), in Ωt,

∇ϕi · n = 0, ∇(−ε∆ϕi + fi(Φ)) · n = 0, on Ωt.

An alternative form of the transport equation system in the phase field model is
given by the following when n ≥ 3:

(155)


∂tϕi = ∆µi, i = 1, 2 · · · , n, in Ωt

µi = −ε∆ϕi + fi(Φ)− 1
n

n∑
j=1

(
− ε∆ϕj + fj(Φ)

)
, in Ωt

∇ϕi · n = 0, ∇(−ε∆ϕi + fi(Φ)) · n = 0, on Ωt.

We note that these are two different phase field models which are not equivalent
when number of phases exceeds 2. Using the EQ method, we can develop lin-
ear, second order, energy stable schemes for these phase models [22]. We will not
elaborate further for this class of phase field models.
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5.3.3. Phase field models involving surfactant at fluid interfaces. Insoluble
surfactant is the type of materials that attaches at the interface of two immiscible
fluids to reduce the interfacial tension. There are many diffuse interface models for
immiscible binary fluid mixtures accounting for surfactant [48, 49, 27]. An overview
about this topic can be found in [30]. Here we give a brief introduction of some
models in this class and present some energy stable numerical schemes.

When one ignores the hydrodynamic effect, a reduced model to study the phase
transition with surfactant emerges, given by

(156)

{
∂tϕ+∇ · (ϕv) = ∇(Mϕ∇µϕ),
∂tψ +∇ · (ψv) = ∇ · (Mψ∇µψ),

where ϕ is the volume fraction of a fluid and ψ is the concentration of the surfactant.
The free energy for the material system is consisted of two parts and given by

(157) F =

∫
Ω

dx
[ε
2
|∇ϕ|2 + 1

4
(ϕ2 − 1)2 +G(ϕ, ψ)

]
,

where the first part is the interfacial energy of the two immersible fluid mixture,
and the second part is the free energy due to the surfactant. There are a couple
choices for the surfactant contribution to the free energy G(ϕ, ψ).

• The following free energy part was proposed in [48]

(158) G(ϕ, ψ) = −sψ
2
|∇ϕ|2 + εψ

2
|∇ψ|2 + w

2
ψϕ2 +

λ

2
ψ2 +

vψ

2
(∆ϕ)2.

where s, ε, w, λ, v are model parameters. s is a parameter measuring the re-
duction of surface tension at the presence of the surfactant; ε is the strength
of conformation entropy for the surfactant; v measures the surfactant in-
duced regularization; and ω and λ are two model parameters for the bulk
part of free energy of the surfactant.

• In [50], another form of G was proposed as follows

(159) G(ψ, ϕ) = −sψ
2
|∇ϕ|2 + w

2
ψϕ2 + λ

[
ψ lnψ + (1− ψ) ln(1− ψ)

]
,

where the first term represents that reduction of surface tension at the
presence of surfactant, the second term is to avoid the surfactant from
colliding, and the last term denotes the entropy of the surfactant.

• In [49], a different form of G was proposed as

(160) G(ϕ, ψ) =
s

2
(ψ − |∇ϕ|)2 + λ

[
ψ lnψ + (1− ψ) ln(1− ψ)

]
,

where the first term makes the surfactant to concentrate on the interface
and the second term is the entropy of surfactant.

• In [27], yet another G was proposed as

(161) G(ψ, ϕ) = −sψ
2
|∇ϕ|2 + d

2
(∆ϕ)2 +

w

2
ψ2(ψ − ψ0)

2,

where the first term represents the reduction of surface tension by surfac-
tant, the second term is a stabilizing term, and the last term controls the
coarsening of surfactant using a double well potential.

We remark that Yang and Ju studied (160) in [60], and Yang studied (161)
partially in [56]. Both studies focused on thermodynamics effects for simplicity.
Applying the EQ strategy, one can design linear schemes for the models. For
instance, for the free energy given in (160), we introduce

(162) q1 = ψ − |∇ϕ|, q2 =
√
ψ lnψ + (1− ψ) ln(1− ψ) +A,
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such that the free energy is reformulated into a quadratic form. We omit the details
of the numerical development, which can be readily derived following the general
framework discussed in this paper. Interested readers are referred to the references
[56, 60] for details.

6. Conclusions

We have presented the energy quadratization method as a general and systematic
strategy for developing numerical approximations to thermodynamically consistent
model, especially, the dissipative models. This approach is closely related to the
variational and dissipative property of the governing system of equations in the
models. It exploits the mathematical structure of the models to arrive at linear,
second order, energy stable numerical schemes. After discussing the strategy of
applying EQ method for general thermodynamically consistent models, we apply
it to numerically approximate a plethora of thermodynamically consistent phase
field models. Through the examples, we have demonstrated that the EQ strategy
is so general and easy-to-learn that it can become a general practice for everyone
who would like to develop efficient numerical approximations to thermodynamically
consistent models.
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